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Abstract

When successive monopolies transact through noncooperative linear pricing, the resulting double
markup decreases their joint pro�ts relative to vertical integration. However, if there are down-
stream rivals (which are not double marginalized), the same noncooperative interaction often
inadvertently raises their joint pro�ts. Pro�t e�ects depend on how the well-understood harm
from misaligned interests compares to the value of the resulting strategic e�ect. When pro�table,
vertical noncooperation incidentally approximates strategic delegation à la Bonanno and Vickers
[1988], but avoids its credibility problem, suggesting an inability to bargain may be indirectly
bene�cial. The �conjectural consistency� concept helps to explain the disparate pro�t e�ects,
and to synthesize the literature on strategic delegation and vertical control. The optimal way
to �distort� a downstream �rm's behavior is always to make it behave as if it has a consistent
conjecture, no matter the distortion mechanism. If upstream competitors do this in parallel, they
induce a �consistent conjectures equilibrium� (CCE) � or else a close analogue � evincing a strong
link between ordinary Nash games and the CCE.
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1 Introduction

The double marginalization problem arises when producers of complementary goods set above-cost

prices noncooperatively rather than jointly, leading the total price to re�ect two or more independent

markups. This problem was �rst recognized by Spengler [1950], and has played a prominent role

in shaping antitrust and the theory of the �rm.1 In the case of successive monopolies, it is well-

established that double marginalization both injures consumers and erodes joint pro�ts relative

to integration. Indeed, vertical merger is widely thought to enhance pro�ts, since �integration

harmonizes interests� (Williamson [1971]).

However, in oligopoly environments, pure integration may not maximize joint pro�ts. Vickers

[1985] shows that a �rm may bene�t by �strategically delegating� decisions to an agent with di�erent

objectives, for such delegation may act as a form of commitment.2 For example, under Bertrand

competition with di�erentiated products, a �rm would like to commit to a higher price than it sets in

the Bertrand-Nash equilibrium, and thus the �rm could raise pro�ts by delegating to an agent that

always sets higher prices.3 Beginning with Bonanno and Vickers [1988], a number of papers have

applied the strategic delegation idea to vertical contracting, showing that double marginalization

(or vertical restraints) could in principle be used strategically to increase joint pro�ts.4 This gives

rise to the possibility of �strategic double marginalization,� which involves a two-part tari� (whose

marginal price could be higher or lower than marginal cost) set to maximize joint pro�ts by exactly

inducing the downstream �rm to play its Stackelberg strategy in equilibrium � an idea that is by

now well-understood.

Of course, this kind of strategic vertical contracting is very di�erent from the noncooperative

pricing that characterizes the successive monopolies problem; it is designed to maximize joint pro�ts,

whereas a noncooperative upstream �rm disregards its impact on downstream pro�ts. Furthermore,

strategic delegation has been criticized for its apparent lack of credibility (e.g. Katz [1991]).5

O'Brien and Sha�er [1992] speci�cally argue that two-part tari�s are non-credible to the extent

that they can be privately renegotiated. Intuitively, if third party rivals are acting like Stackelberg

followers, a vertical pair maximizing joint pro�ts would like to deviate from the Stackelberg leader

action (a Stackelberg leader's strategy is generally not a best response, after all.) Therefore, if non-

public side agreements between the upstream and downstream �rm are possible � or more generally

1See, e.g., Riordan [2008]; Salop and Sche�man [1983]; Williamson [1971].
2As was �rst established by Heinrich von Stackelberg, an oligopolist can often bene�t by committing to a di�erent

strategy than it plays in equilibrium, because this allows it to take advantage of its rival's strategic behavior.
3See also, e.g., Fershtman and Judd [1987].
4See also Rey and Stiglitz [1995].
5For example, in the �divisionalization� model of Baye et al. [1986], distinct agents operate a number of competing

intra-�rm divisions (e.g. competing subsidiaries owned by a common parent) as a way to �precommit� to high
quantity and hence cause rivals to act as Stackelberg followers. Once rivals have responded as such, the possibility
of renegotiation causes divisionalization to unravel and become non-credible. After all, the parent company has
both the power and the economic incentive to change the behavior of division heads once downstream rivals restrict
production. Corts and Neher [2003] show that when a single upstream �rm deals with multiple downstream �rms,
incentives for bilateral renegotiation, and hence the credibility of divisionalization, can be maintained. But if there
but a single decision maker for a given �rm (as in most of the delegation literature), the possibility of secret side
agreements means that strategic delegation cannot be used pro�tably.
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if the ability to contract e�ciently implies the ability to renegotiate � then strategic delegation will

tend to be non-credible and hence will not a�ect equilibrium outcomes.

On the other hand, what if a positive upstream markup results from an inability to coordinate

price e�ciently (as in the successive monopolies problem) rather than strategic contracting? The

positive upstream markup will still a�ect the downstream �rm's behavior, and in some environ-

ments this inadvertently improves joint pro�ts by generating a valuable strategic e�ect, essentially

approximating strategic delegation. But now there is no credibility problem, since the �rms cannot

coordinate in the �rst place. The result is that noncooperative double marginalization may provide

a less precise but more credible way to generate the rents of strategic delegation.

In this paper, we provide a complete taxonomy of the situations in which double marginal-

ization increases joint pro�ts. We �rst explore noncooperative double marginalization in the spirit

of Spengler [1950], where the upstream �rm does not take into account the pro�ts of the down-

stream �rm, but rather charges a linear price to maximize upstream pro�ts. Since we assume

double marginalization does not directly a�ect any third party competitors, this treatment closely

analogizes the successive monopolies problem. We then consider cooperative or strategic vertical

contracting in the spirit of Bonanno and Vickers [1988], and we show how the notion of �conjectural

consistency� serves to synthesize the literature on strategic delegation and vertical control. Our

analysis is primarily directed at three questions.

1. Under what conditions does noncooperative linear pricing in a vertical

relationship increase joint pro�ts?

We study a single vertical relationship in which the upstream �rm is a monopolist and the

downstream �rm faces third party competition (a single downstream rival).6 Downstream competi-

tion may be in prices, quantities, or any other choice variable that would shape a �rm's consumption

of a costly input, e.g. R&D relying on a patented process. To that end, part of our contribution is

to show that the pro�t e�ects of noncooperative double marginalization vary substantially among

di�erent downstream interactions. The downstream rival's costs are exogenously given and thus

are not a�ected by the double marginalization problem; for example, it may be the the rival pro-

duces the input internally or simply does not use it.7 In this sense, our model is essentially the

simplest oligopoly extension of the successive monopolies problem: we add a downstream rival with

exogenous input costs, but continue to focus on the same noncooperative interaction in the original

vertical relationship.

That the downstream rival's costs are left exogenous distinguishes our analysis from some

prior studies showing that noncooperative double marginalization can enhance joint pro�ts when

it is imposed on most or all downstream �rms in parallel, generating a collusion-like e�ect in the

downstream market (e.g. Rey and Stiglitz [1995]; Gaudet and Long [1996]) � or, relatedly, when it

6The results extend in a straightforward way to the case of multiple downstream rivals by transforming the
interaction into an aggregate game.

7The point here is to isolate double marginalization to a single vertical chain when performing the relevant
comparative statics � the comparison of joint pro�ts between vertical integration and double marginalization.
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can be used as a tool for raising rivals' costs (Gaudet and Long [1996], Salop and Sche�man [1983]).

Unlike these studies, our model isolates all cost distortions created by double marginalization to the

vertical pair whose joint pro�ts are the focus of the comparative statics, and hence our results are

not driven by any collusion-like or exclusionary e�ects.

We show that double marginalization inadvertently increases joint pro�ts in many familiar

environments, even though the upstream �rm charges a monopoly price, and even though it does

not directly a�ect the downstream rival. The noncooperative upstream markup depends only on

equilibrium strategies, which shape demand elasticity for the upstream �rm's good, whereas the

jointly-optimal upstream markup depends on the e�ect of a downstream �rm's action on the in-

duced best response of rivals (�strategic e�ects�). These two things are largely independent of one

another, however, because best response functions (which determine equilibrium strategies) ignore

strategic e�ects by de�nition. Consequently, the impact of double marginalization on joint pro�ts

is entirely ambiguous: it can diminish, raise, or even maximize joint pro�ts, compared to those of

an integrated �rm; in some games with strong strategic e�ects, the upstream monopoly price is too

low to maximize joint pro�ts. To the extent that strategic double marginalization is non-credible,

our results suggest that �rms with complementary interests may actually bene�t from the inability

to contract e�ciently.

Section 2 provides examples of pro�table double marginalization within familiar competitive

environments, and also shows that our results carry over to the case of �horizontal� double marginal-

ization. No single super�cial property of the downstream game - such as whether it involves strategic

substitutes or strategic complements - is su�cient to determine how double marginalization a�ects

pro�ts, because no such property entirely determines the impact of strategic e�ects on joint pro�ts.

In Section 3 we derive our primary results on the pro�t e�ects of double marginalization using a

very general game that nests virtually all di�erentiable and concave models of simultaneous-move

competition.

2. What explains the disparate pro�t e�ects of noncooperative double

marginalization within di�erent competitive environments?

Section 4 seeks to provide a richer understanding of why double marginalization produces such

disparate pro�t e�ects within di�erent games. We answer this question by invoking the theory of

conjectural variation, �rst introduced by Bowley [1924], and in particular the notion of conjectural

consistency popularized by Bresnahan [1981]. A �rm's �conjecture� is its implicit belief about

how rivals will respond to changes in its own conduct. In most games, �rms' conjectures are

�inconsistent,� i.e. incorrect.8 For example, a Cournot �rm fashions a best response under the

implicit belief (its conjecture) that rival output is �xed, but in truth the rival has a downward

sloping reaction function. A Cournot �rm with a consistent conjecture would internalize strategic

e�ects, leading it to play the Stackelberg leader strategy.

8Speci�cally, a conjecture is a belief about the slope of one's rival's reaction function, and it is consistent if and
only if this belief is correct, at least locally.
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Depending on how a �rm's inconsistent conjecture compares to the consistent one, the �rm

either understates or overstates the competitiveness of its rival's behavior. Noncooperative double

marginalization can enhance joint pro�ts in precisely those games in which the downstream �rm's

inconsistent conjecture leads it to overstate competition, in which case it can bene�t from being

induced to behave less competitively by paying a positive transfer to the upstream �rm. Further, in

every game, the jointly-optimal upstream markup (which could be negative) is always that which

induces the downstream �rm to behave as if it has a consistent conjecture, at least in equilib-

rium. One intuitive explanation is that an inconsistent conjecture re�ects a failure to internalize

strategic e�ects, and the jointly-optimal upstream markup acts like a Pigouvian tax that forces the

downstream �rm to internalize them.

3. How does strategic vertical pricing relate to other methods of distorting

behavior in vertical relationships?

Beginning with Fershtman and Judd [1987] and Bonanno and Vickers [1988], the strategic

delegation literature has shown how vertical restraints, strategic pricing, or specialized agency con-

tracts can be used to distort �rm behavior in a pro�table way.9 Section 5 synthesizes this literature

using the notion of conjectural consistency. We develop a very general model of �distorted� games in

which upstream �rms can strategically distort the behavior of downstream �rms. The model nests

essentially all possible mechanisms for strategic distortion, including strategic delegation, strategic

double marginalization, and vertical restraints like resale price maintenance. The optimal way to

distort a downstream �rm is always to make it behave as if it has a consistent conjecture, no matter

the nature of the distortion. Consistent with the insights from the strategic delegation literature,

any kind of strategic distortion of a downstream �rm's behavior will induce exactly the same down-

stream equilibrium actions (holding the rival's reaction behavior constant), namely the distorted

�rm's preferred pro�le along the rival's reaction curve.

If upstream competitors strategically distort the downstream �rms in parallel, they induce

both downstream �rms to act as if they have (globally) consistent conjectures, at least in equilib-

rium. This induces them play the equilibrium strategies corresponding to a consistent conjectures

equilibrium (CCE) � a concept introduced by Bresnahan [1981] � or else a close analogue which

we call an �induced CCE.�10 This is a surprising result, since the CCE derives from non-Nash

behavior,11 leading many to criticize the concept. But we show that CCEs arise in games with

strategically distorted behavior even though every �rm engages in ordinary Nash behavior.

9See also Gal-Or [1991]; Rey and Stiglitz [1995]; O'Brien and Sha�er [1992]; Mathewson and Winter [1984]; Jansen
et al. [2007].

10Speci�cally, upstream competition through strategic distortions always generates an induced CCE, which is an
equilibrium such that each �rm is distorted into playing the same equilibrium strategy it would adopt if it had a
(globally) consistent conjecture, given its rival's (distorted) reaction behavior. This may or may not generate exactly
the same equilibrium strategies as Bresnahan's �perfect� CCE. But it always has the property that each �rm is
properly accounting for strategic e�ects in equilibrium, making it a close analogue.

11To our knowledge, the only conventional Nash equilibrium in a supermodular game (without strategic distortions)
that happens to be a CCE is the Bertrand equilibrium with undi�erentiated products. See Bresnahan [1981].
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Section 6 concludes by discussing implications for antitrust, vertical integration, and the

theory of the �rm. That joint pro�ts can be credibly enhanced because of indirect strategic e�ects

may imply a role for a �strategic theory of the �rm.� In most situations when one �rm imposes a

positive or negative externality on another �rm, that e�ect can be internalized either by Coasean

bargaining or by integration. However, when vertically related �rms integrate to align interests, third

party rivals will understand that the downstream �rm's equilibrium behavior, previously distorted

by noncooperative double marginalization, will be replaced by the integrated �rm's more competitive

behavior, and this may provide lower joint pro�ts. Thus, counterintuitively, joint pro�ts may be

higher when the �rms are separate and noncooperative than when they can bargain e�ciently.

As some portions of this article address the theory of double marginalization at an abstract

level, the reader primarily interested in antitrust implications will �nd Sections 2, 3, and 6 most

relevant.

2 Motivation and Examples

We begin with three examples illustrating pro�table double marginalization within familiar

competitive environments. In each example, we modify a downstream duopoly game so that �rm

1 must pay a linear per-unit �transfer price� of t to an upstream �rm. First, the upstream �rm

chooses t noncooperatively � meaning that it can charge only the distortionary linear price t, not

a two-part tari� � and then the downstream �rms compete in simultaneous moves, with �rm 1

treating t as a marginal cost. Upstream costs are normalized to zero, so t = 0 corresponds to the

absence of double marginalization and, by extension, vertical integration. This is our basis for

comparing joint pro�ts (of �rm 1 and the upstream �rm). The examples are arranged in increasing

order of the joint pro�t increase. We begin with a simple game of Hotelling price competition.

Example 1 (Hotelling): There is a unit line of locations x ∈ [0, 1], with one consumer at each

location, and with �rms 1 and 2 located at x = 0 and x = 1, respectively. Each i = 1, 2 chooses a

price, pi. A consumer at location x gets surplus v−p1−x if it buys from �rm 1 and v−p2− (1−x)

if it buys from �rm 2, where v ≥ 3.12 This yields demand functions qi = 1
2 [1 − pi + pj ] for each i

and j 6= i. Firm 2's costs are zero; �rm 1 must pay a per-unit transfer price t to the upstream �rm.

Best response functions are thus R1(p2|t) = 1
2(1 + t+ p2) and R2(p1) = 1

2(1 + p1). Given t, �rm 1's

equilibrium price and output are

p∗1(t) =
3 + 2t

3
q∗1(t) =

3− t
6

(1)

Since t is just a transfer, joint pro�ts of �rm 1 and the upstream �rm are J(t) = q∗1(t)p∗1(t).

As is well-established in the strategic delegation literature, J is maximized with the transfer price tS

that induces p∗1(tS) = pS1 , where p
S
1 ≡ 3

2 is �rm 1's Stackelberg price when t = 0. The upstream �rm

12The constraint on v simply ensures that every consumer will always get nonnegative surplus from each product
in equilibrium.
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prices noncooperatively, maximizing only upstream pro�ts, tq∗1(t), resulting in a monopoly price

tm. This price will enhance joint pro�ts if and only if it lies in the �Goldilocks zone� � the interval

of transfer prices [0, t] that provide weakly larger joint pro�ts than integration (t = 0). Here t is

de�ned implicitly by J(t) = J(0). It is easy to verify that

tm = t =
3

2
tS =

3

4
(2)

Thus double marginalization with an upstream monopoly price provides exactly the same

joint pro�ts as vertical integration.13 Hence noncooperative vertical pricing will never reduce joint

pro�ts in a simple Hotelling environment, even if the upstream �rm is a monopolist. Further, if the

upstream �rm is price constrained to any degree, no matter how tiny � for instance, there may be

a third party selling the same input � double marginalization will strictly raise joint pro�ts. Figure

1 provides a graph illustrating the Goldilocks zone. It shows the best response functions associated

with t = 0 and t = t = tm. Joint pro�ts weakly rise for any upstream markup t that leaves �rm

1's distorted best response function somewhere in the middle. The dotted line IP1 is the iso-pro�t

curve that runs through these equilibria, while SE denotes the Stackelberg equilibrium at which

joint pro�ts are maximized. �

Figure 1: Goldilocks Zone

If the model involved linear Bertrand competition with di�erentiated products (and the same

costs), the analysis is very similar to Example 1, except that double marginalization is weakly

pro�table only if the upstream markup is strictly price-constrained.14 Importantly, however, if the

model were instead linear Cournot, any positive transfer price � and hence any level of double

13The result would hold up if we changed the length of the Hotelling line or the marginal �travel cost" (which
is presently 1). It similarly holds up if we allow for asymmetries in v or if we give the �rms asymmetric internal
production costs.

14Speci�cally, if the demand speci�cation were qi = 1− pi + spj for each i, where s ∈ (0, 1), then we would obtain
the result 0 < t < tm, and thus double marginalization will strictly increase joint pro�ts only if the upstream �rm is
su�ciently price-constrained.
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marginalization � would reduce joint pro�ts. Intuitively, a linear Cournot �rm wants to commit

to a more competitive strategy (a lower output level), while a Bertrand or Hotelling �rm wants to

commit to a less competitive strategy (a higher price). Since double marginalization always induces

less competitive behavior, it has opposite pro�t e�ects in these alternative cases.

Strictly pro�table double marginalization does not always require that the upstream �rm is

price-constrained, however. Example 2 demonstrates this using an iso-elastic Cournot game. Here

even unconstrained double marginalization can strictly increase joint pro�ts.

Example 2 (Iso-Elastic Cournot): Each �rm i = 1, 2 chooses an output level qi ≥ 0. Products

are undi�erentiated, and aggregate inverse demand takes the constant elasticity form p(Q) = 1/Q,

where Q = q1 + q2 is aggregate output.15 Marginal costs are constant and equal to c2 for �rm

2 and c1 + t for �rm 1, where c1, c2 > 0. Thus payo�s are π1 = q1p(q1 + q2) − (c1 + t)q1 and

π2 = q2p(q1 + q2)− c2q2 for �rms 1 and 2, respectively. These yield the best response functions

R1(q2|t) =

√
q2

c1 + t
− q2 R2(q1) =

√
q1

c2
− q1 (3)

Unlike most Cournot models, these best response functions are not monotonically decreasing,

but rather take an inverted-U shape. Conditional on t, the Nash equilibrium output levels and price

are

q∗1(t) =
c2

(c1 + t+ c2)2
q∗2(t) =

c1 + t

(c1 + t+ c2)2
p∗(t) = c1 + t+ c2 (4)

and equilibrium pro�ts for the downstream �rms are π∗1(t) = c2q
∗
1(t) and π∗2(t) = (c1 + t)q∗2(t).

Joint pro�ts are J(t) ≡ π∗1(t) + tq∗1(t), maximized with the transfer price tS that induces �rm 1's

Stackelberg output: q∗1(tS) = qS1 ≡ c2/4c
2
1. Note that qS1 < q∗1(0) if and only if c1 > c2. Thus,

in contrast to ordinary Cournot competition, a �rm may wish to commit to a less competitive

strategy, provided it is the less e�cient producer. In such a case, the highest positive transfer

price that weakly enhances joint pro�ts is t, de�ned implicitly by J(t) = J(0). As in the previous

example, let tm denote the monopoly transfer price, which maximizes tq∗1(t). It is easy to verify

that the transfer prices (tS , tm, t) are unique and given by

tS = c1 − c2 tm = c1 + c2 t =
c2

1 − c2
2

c2
(5)

Unlike the linear Bertrand and Cournot models, where the jointly-optimal markup is either

always positive or always negative, here it can be either positive, negative, or zero. Note that

that tS < tm for all possible cost levels, so double marginalization never maximizes joint pro�ts.

15This demand speci�cation has been studied in a number of theoretical papers on duopoly pricing. See, e.g., Puu
(1991). Note that, while this model is problematic in the monopoly case (a monopolist would set an in�nite price),
it creates no such problems in the duopoly case, provided both �rms have positive production costs.
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Nevertheless, tm lies in the Goldilocks zone [0, t] whenever c1 ≥ 2c2.
16 �

Example 2 shows that in some games, unconstrained double marginalization strictly im-

proves, though does not maximize, joint pro�ts. Even this modest limitation does not always arise.

Example 3 illustrates a game in which the monopoly transfer price may inadvertently maximize

joint pro�ts, or even be too low to achieve the joint-optimum.

Example 3 (Freeriding Innovators): There are two �rms engaging in costly research to complete

a new invention worth payo� 1. Each �rm chooses a costly research success probability φi ∈ [0, 1],

which gives the probability that its own research will solve its own problem, at convex cost βφ2
i ,

where β ≥ 1. In addition to this internal research cost, Firm 1 must make a linear transfer payment

tφ1 to an upstream �rm. This transfer represents, for example, that �rm 1's research requires use

of a patented process for which an upstream patent holder charges a royalty of t.

There are information spillovers, however, and thus one �rm's research may inadvertently solve

the other's problem. In particular, �rm j's research will solve problem i (independently of whether it

solves problem j) with probability φj , and hence problem i is solved with probability φi+(1−φi)φj .
Therefore payo� functions are π1 = φ1 + (1−φ1)φ2− βφ2

1− tφ1 and π2 = φ2 + (1−φ2)φ1− βφ2
2 for

�rms 1 and 2, respectively. The corresponding best response functions are R1(φ2|t) = (1−t−φ2)/2β

and R2(φ1) = (1− φ1)/2β. Conditional on t, the Nash equilibrium is

φ∗1(t) =
2β − 1− 2βt

4β2 − 1
φ∗2(t) =

2β − 1 + t

4β2 − 1
(6)

and pro�ts are π∗i (t) = βφ∗i (t)
2 + φ∗j (t) for each downstream �rm i. Joint pro�ts of �rm 1 and the

upstream �rm are maximized with the transfer price tS that induces �rm 1's Stackelberg strategy

φS1 , where

φS1 =
β − 1

2β2 − 1
tS =

2β − 1

4β2 − 2
(7)

The upstream monopoly transfer price which maximizes tφ∗1(t) is tm = (2β−1)/4β. It is easy

to verify that sign{tS − tm} = sign{β̃ − β}, where β̃ ≡ (1 +
√

3)/2 ' 1.366. Hence, if β = β̃, then

tm = tS and thus the monopoly transfer price inadvertently maximizes joint pro�ts. If β ∈ [1, β̃),

then tm is too low to maximize joint pro�ts, a possibility that never arises in any of the preceding

examples. The Goldilocks zone in this game is [0, t], where t = (2β − 1)/(2β2 − 1). It is then

straightforward to verify that tm ∈ [0, t] if and only if β ≤ β ' 2.22.

16Due to the model's exotic best response functions, its equilibrium becomes unstable when costs are highly
asymmetric. Fortunately, all of the above results can still obtain in stable equilibria. To show this, we make use
of Puu [1991], which studied precisely the same game (albeit without double marginalization), and showed that
its equilibrium is stable if and only if c/c < 3 +

√
2 ' 5.82, where c (c) is the maximum (minimum) of c1 and

c2. With this, assume c1 = (2 + α)c2 for some α > 0, implying tm < t. Then the equilibrium with t = 0 is
stable if c1/c2 = 2 + α ≤ 5.82, which is true for small α. Similarly, the equilibrium with t = tm is stable if
(c1 + tm)/c2 = 5 + 2α ≤ 5.82, and this too is satis�ed for small α.
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To explain these results, note that φS1 < φ∗1(0), re�ecting that the counterfactual integrated

�rm would like to commit to a freeriding strategy in which it lets �rm 2 do most of the work. In

fact, φS1 = 0 when β = 1, in which case �rm 1 would like to commit to sitting out entirely. Of

course, an upstream �rm that prices noncooperatively would never want to induce this outcome,

since it generates an upstream pro�t of zero. Thus, for β close to 1, the jointly-optimal strategy

is less competitive than that induced by double marginalization. The opposite is true when β is

su�ciently high, and hence continuity ensures there is some intermediate β-value at which the

monopoly transfer price inadvertently maximizes joint pro�ts. �

These examples, in addition to the brie�y discussed cases of di�erentiated Bertrand and linear

Cournot, show that the possible pro�t e�ects of double marginalization run the gamut: it can be

categorically harmful, joint pro�t-maximizing, or anything in between. Examples 2 and 3 further

show that this distinction does not simply hinge on the distinction between strategic complements

and strategic substitutes. Example 2 involves neither strategic complements nor strategic substi-

tutes, since reaction functions are non-monotonic. Further, the best response functions in Example

3 are identical to those arising in linear Cournot competition, notwithstanding that these models

engender completely opposite conclusions about double marginalization. We return to this point in

Section 3.

2.1 A Note on Horizontal Double Marginalization

We now brie�y show that our results carry over to the case of �horizontal� double marginalization,

which arises when horizontally related �rms set independent markups for goods that are com-

plementary in consumption.17 Horizontal double marginalization is generally studied under the

assumption that �rms face no third party competition (we are unaware of a counterexample.) But

we show in Example 4 that under third party competition, horizontal (and noncooperative) double

marginalization can raise pro�ts. Importantly, this demonstrates that our basic results are not

driven by an arti�cial change in the timing of the game.

Example 4 (Competing Bundles): Let there be two bundles, A and B, which are imperfect

substitutes that compete in prices. Each bundle contains a pair of perfectly complementary goods.

The total price of bundle I ∈ {A,B} is denoted pI . Demand for bundle I is qI = 1 − pI + spJ ,

where J 6= I and s ∈ (0, 1). Let ΠI = qIpI denote the total pro�ts of bundle I. Bundle B consists

of two goods produced by a single integrated �rm, which therefore chooses a single price pB to

maximize ΠB. The components of bundle A are priced noncooperatively by two �rms i = 1, 2.

Thus pA = λ1 + λ2, where λi is the component price that �rm i sets to maximize its own pro�ts,

17As a game-theoretic matter, the di�erence between horizontal and vertical double marginalization is that the
complementary goods are priced simultaneously rather than sequentially.
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λiqA, taking (λj , pB) as given. All prices are set simultaneously. The equilibrium involves

λ∗ =
2 + s

2(3− s2)
Π∗A = 2(λ∗)2 (8)

Now consider the alternative equilibrium arising when bundle A is priced by an integrated

�rm, eliminating horizontal double marginalization. In this case the equilibrium has

p∗∗A =
1

2− s
Π∗∗A = (p∗∗A )2 (9)

Thus p∗A ≡ 2λ∗ > p∗∗A , re�ecting that horizontal double marginalization makes bundle A

more expensive. However, we also �nd that Π∗A > Π∗∗A whenever s > s, where s =
√

2−
√

2 ' .76.

Thus, horizontal double marginalization strictly increases joint pro�ts earned on bundle A when

the competing bundles are su�ciently close substitutes. �

3 General Model

We now present a generalized double marginalization game. There is a downstream market with

two �rms, i = 1, 2.18 There is also an upstream �rm that double marginalizes �rm 1. These three

�rms are engaged in a two-stage game, which is a generalization of the format used in Examples

1-3. The stages in the generalized game are de�ned as follows.

Stage 2 (Downstream Competition)

In stage 2, the downstream �rms simultaneously choose strategies a1 ∈ A1, a2 ∈ A2 to max-

imize payo� functions π1(a1, a2) − tX1(a1, a2) and π2(a2, a1). Here tX1(a1, a2) gives �rm 1's total

transfer payment as a function of strategies and a transfer price t chosen by the upstream �rm.19

The function X1 : A1 × A2 → R+ is the transfer base, which we can interpret either as �rm 1's

output (X1 = q1(a1, a2)), or more generally as some strictly increasing transformation of �rm 1's

output. The transfer price satis�es t ≤ τ for some τ > 0, which allows for the possibility that the

upstream �rm is price-constrained. Best response functions are denoted R1(a2|t) and R2(a1) for

�rms 1 and 2, respectively. We make the following assumptions:

(A1): each Ai is a compact interval in R

(A2): each πi is twice continuously di�erentiable in (ai, aj) and strictly concave in ai

(A3): X1 is twice continuously di�erentiable in (a1, a2) and strictly monotonic in a1

18The results that follow can be extended in a straightforward way to aggregate games with N > 2 downstream
�rms. The duopoly assumption is used for expositional simplicity.

19X1 is written as a function of both a1 and a2 because in some games, e.g. Bertrand competition, output depends
on both players' strategies.
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(A4): for every t ∈ [0, τ ], there exists a unique and interior downstream equilibrium

(ae1(t), ae2(t))

(A5): The Stackelberg objective function π1(a1, R2(a1)) is strictly concave with a unique

and interior maximizer aS1 , and there exists some tS ∈ R such that ae1(tS) = aS1

Assumptions (A1) and (A2) ensure that the best response functions are well-de�ned and con-

tinuously di�erentiable. Assumption (A3) ensures that t acts like a marginal cost, so that R1(·|t) is
shifting strictly monotonically in t.20 Since R2 is independent of t, this implies that ae1(t) is strictly

monotonic in t. Assumption (A4) ensures that equilibria are unique and pinned down by �rst order

conditions. Assumptions (A5) ensures the Stackelberg equilibrium is unique and interior, and that

there is some tS that would induce this equilibrium. Note, however, that we make no assumption

about the sign or magnitude of tS . Finally, the concavity provision in (A5) simpli�es the compar-

ative statics by ensuring that joint pro�ts are monotonically falling as t moves further away from tS .

Stage 1 (Noncooperative Upstream Pricing)

In stage 1, the upstream �rm sells a costless input to �rm 1 according to the trans-

fer price schedule tX1. It sets the transfer price t to maximize equilibrium transfer revenue

T (t) ≡ tX1(ae1(t), ae2(t)) under the constraint t ≤ τ . The transfer base function X1 and the maximal

transfer price τ > 0 are exogenously given. We make one additional assumption ensuring that the

upstream �rm's maximization problem is well-behaved:

(A6) T (t) is strictly concave with a unique unconstrained maximizer tm ∈ (0,∞).

Let t̂ = min{tm, τ} denote the transfer price that maximizes transfer revenues subject to the

constraint t ≤ τ . We refer to the equilibrium with t = 0 as the integration equilibrium, re�ecting

that a vertically integrated �rm would ignore t.

Let πS1 (a1) ≡ π1(a1, R2(a1)) give �rm 1's pro�t function when it acts as a Stackelberg leader

with t = 0. Since T is just a transfer, equilibrium joint pro�ts are π1(ae1(t), ae2(t)) = πS1 (ae1(t)).

That is, joint pro�ts of the upstream �rm and �rm 1 are equivalent to the pro�ts an integrated �rm

would get if it were committed to playing ae1(t). In the following decomposition, we show conditions

under which some positive degree of double marginalization is jointly-pro�table, implying at the

very least that equilibrium joint pro�ts will rise if the upstream �rm is su�ciently price-constrained.

Proposition 1. There exists τ > 0 such that double marginalization strictly increases joint pro�ts

if and only if
∂π1

∂a2
× ∂R2

∂a1
× ∂ae1

∂t
> 0

when evaluated at the integration equilibrium.

20If ∂X1/∂ai > (<)0, then R1 shifts downward (upward) in t, so we can interpret ai as output (price).
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Proof : The total derivative of joint pro�ts with respect to t is

dπS1 (ae1(t))

dt
=
∂π1(ae1, a

e
2)

∂a1

∂ae1
∂t

+
∂π1(ae1, a

e
2)

∂a2

∂R2(ae1)

∂a1

∂ae1
∂t

(10)

where we have omitted the argument t on the righthand side. When t = 0, �rm 1's �rst order

condition requires that ∂π1
∂a1

= 0. Hence, locally at the integration equilibrium, joint pro�ts are

strictly increasing in t if ∂π1∂a2
∂R2
∂a1

∂ae1
∂t > 0. Thus, if τ is su�ciently small then t̂ will strictly increase

joint pro�ts. For the �only if,� note that dπS1 (ae1(t))/dt < 0, since πS1 is strictly concave in a1 and

ae1 is strictly monotonic in t. Thus, if the stated inequality were not true, then any positive t would

erode joint pro�ts. Q.E.D.

Proposition 1 shows that the pro�tability of noncooperative double marginalization depends

on the interaction of three local conditions: strategic complementarity (∂R2
∂a1

); payo� complementar-

ity (∂π1∂a2
); and the direct impact of raising �rm 1's costs (

∂ae1
∂t ). When either one or three of these

things are positive (and none are zero), some degree of double marginalization is bene�cial. For

example, linear Cournot is a game of strategic substitutes and payo� substitutes where higher costs

lead to lower quantity (all three partial derivatives are negative), whereas the Freeriding Innova-

tors games is one of strategic substitutes and payo� complements where higher costs lead to less

innovation (one positive derivative, two negative ones).

The previous proposition shows when there exists some transfer price such that pro�ts improve

under double marginalization, but when does fully unconstrained double marginalization improve

pro�ts? The relative values of the unconstrained monopoly transfer tm and the jointly-optimal

transfer tS can be investigated by decomposing marginal joint pro�ts with respect to t � given by
d
dtπ1(ae1(t), ae2(t)) = d

dtπ
S
1 (ae1(t)) � into two distinct marginal e�ects of changing t. The �rst is the

direct e�ect, DE(t), that derives from the resulting marginal change in ae1(t). The second is the the

strategic e�ect, SE(t), that derives from the corresponding marginal change in ae2(t) = R2(ae1(t)).

Explicitly:

DE(t) =
∂π1(ae1(t), ae2(t))

∂a1
× ∂ae1(t)

∂t
(11)

SE(t) =
∂π1(ae1(t), ae2(t))

∂a2
× ∂R2(ae1(t))

∂a1
× ∂ae1(t)

∂t
(12)

Note thatDE(0) = 0, which is an implication of �rm 1's �rst order condition in the integration

equilibrium, and DE(t) < 0 for all t > 0 (and vice versa). To see this, �x t > 0 and note that

∂X1/∂a1 > (<)0 implies ∂R1/∂t < (>)0 and by extension ∂ae1/∂t < (>)0. On the other hand,

the strategic e�ect SE(0) could be positive, negative, or zero. The sign of SE(0) equals that of

tS , which is a direct implication of Proposition 1 (note that the inequality in Proposition 1 simply

says SE(0) > 0). Thus the sign of SE(0) is negative when double marginalization is categorically

harmful and positive when at least some degree of double marginalization is bene�cial. The case
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SE(0) = 0 arises when �rm 1 cannot bene�t from commitment (e.g., when �rm 1 is a monopolist

rather than a duopolist, hence ∂π1/∂a2 = 0). The following proposition establishes that double

marginalization via the unconstrained monopoly transfer tm raises joint pro�ts when bene�cial

strategic e�ects are strong enough to counteract negative direct e�ects.

Proposition 2. Unconstrained double marginalization enhances joint pro�ts if and only if the strate-

gic e�ect is su�ciently large compared to the direct e�ect. In particular,

1) sign{tS − tm} = sign{SE(tm) +DE(tm)}.
2) If SE(·) +DE(·) shifts vertically upward, tS rises in relation to tm.

Proof : The �rst order conditions that pin down tS and tm are, respectively:

SE(tS) +DE(tS) = 0 T ′(tm) = 0 (13)

SE(t) + DE(t) = dπS1 (ae1(t))/dt is strictly decreasing (by strict concavity of πS1 in a1 and mono-

tonicity of ae1(t) in t), and T ′(t) is strictly decreasing (by strict concavity of T ). Thus tm > (≤)tS

if and only if SE(tm) + DE(tm) ≤ (≥)0. Holding T ′(·) constant, if SE(·) + DE(·) shifts upward,

so that SE(tm) +DE(tm) is higher, then tS must rise in relation to tm. Q.E.D.

Let πD1 (t) = πS1 (ae1(t)) − T (t) denote the downstream component of joint pro�ts, given t.

Then since T (.) is maximized at tm by de�nition, ∂πD1 (tm)/∂t = SE(tm) + DE(tm). Thus, when

tm = tS , downstream marginal pro�ts (with respect to t) are zero in equilibrium. If tm < tS , then

downstream pro�ts are increasing in t within a neighborhood of tm � an unusual result that re�ects

a very strong strategic e�ect. For instance, this is true in Example 3 when β ∈ [1, β̃). Even if

tm > tS , strategic e�ects can be su�ciently strong that joint pro�ts are higher at tm than at t = 0,

as we saw in the examples in Section 2. The condition for joint pro�ts to improve is weaker than

the condition that joint pro�ts are maximized, namely requiring that tm lies in the interval [0, t],

where t = max{t ≥ 0|πS1 (ae1(t)) = πS1 (ae1(0))}. For example, if tS > 0 and SE(t) + DE(t) is linear

in t, then this simply requires that tm ≤ 2tS .

Simple price theory can show that tS and tm may be arbitrarily di�erent no matter what

the equilibrium or best response functions are in the downstream game. Therefore, via Proposition

2, the relation between direct e�ects and strategic e�ects is similarly ambiguous, and hence the

pro�tability of double marginalization depends on more than just characteristics of the downstream

game. To see this, note that the monopoly transfer price tm is determined solely by the elasticity

of demand for the input good. Letting X1(t) ≡ X1(ae1(t), ae2(t)), the elasticity of demand for the

upstream good is

εX1(t) = X ′1(t)
t

X1(t)
(14)
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and hence when the optimal transfer price is interior, tm is chosen such that

T ′(t) = X1(t)
[
1 + εX1(t)

]
= 0 (15)

Therefore, the well-known inverse elasticity rule holds: transfer revenue is maximized if and

only if εX1(t) = −1. The elasticity εX1(t), and hence tm, depends solely on equilibrium strategies

conditional on t: for any two games where equilibrium strategies as a function of t are identical,

elasticities are likewise identical for all t, and hence monopoly transfer prices tm are identical. The

joint pro�t maximizing transfer tS , however, may vary arbitrarily based on di�erences in strategic

e�ects. As such, knowing only properties relevant to the best response functions or equilibrium

actions downstream, such as whether the game is one of strategic substitutes or complements, is not

enough to know whether double marginalization is pro�table or not. Further, two games may appear

very similar in certain respects, and yet double marginalization can have very di�erent pro�t e�ects

between them. To illustrate, consider the Freeriding Innovators game (Example 3) with β = 1.

Firm 1's equilibrium input demand, φ∗1(t) = (1 − 2t)/2, is identical to that arising in a Cournot

duopoly with inverse demand p(q1 + q2) = 1 − q1 − q2 and constant marginal costs of t for �rm 1

and zero for �rm 2. Indeed, best response functions for both �rms are identical in these games.

Despite this similarity, double marginalization has totally di�erent pro�t e�ects in these settings,

with tS < 0 = t < tm in the Cournot game and 0 < tm < tS < t in the Freeriding game. Proposition

3 provides a more formal expression.

Proposition 3. Suppose the functions (π1, π2) are changed to some alternatives (π̃1, π̃2) such that,

for every t, the resulting downstream equilibrium strategies are unchanged. Let t̃m and t̃S denote

the values of tm and tS in this alternative game. Then t̃m = tm, but t̃S and tS may be arbitrarily

di�erent. The same is true if we further require that best response functions are unchanged.

Proof: The upstream �rm maximizes tX1(ae1(t), ae2(t)). Equilibrium strategies as a function of t are

unchanged by hypothesis, and thus t̃m = tm. However, cross-derivatives ∂π̃i/∂aj (and potentially

reaction functions) can di�er in the alternative game even if equilibrium actions conditional on t are

unchanged. For example, let π̃i = πi + fi(aj). Since ∂π̃i/∂ai = ∂πi/∂ai, direct e�ects are identical

under either payo� function, but strategic e�ects � and hence the jointly-optimal transfer price �

can be arbitrarily di�erent depending on the magnitude of the derivatives f ′i(aj). Q.E.D.

4 Insights from Conjectural Variation

In Section 3, we showed that the pro�tability of noncooperative double marginalization is in general

ambiguous. For example, the jointly-optimal upstream markup is negative if competition is linear

Cournot, but positive if competition is di�erentiated Bertrand. On the other hand, if competition

is iso-elastic Cournot, then the optimal upstream markup could be positive, negative, or zero. We

showed that the potential pro�tability of double marginalization depend on three separate partial

15



derivatives, but this section seeks to provide a richer explanation. We achieve this using insights from

the conjectural variation (CV) literature, and in particular the notion of conjectural consistency.21

First we provide a very short overview of CV. A �rm's �conjecture� is its implicit belief about

the rate at which its rival will respond to changes in its own conduct. Conjectures are traditionally

de�ned with respect to output, and expressed as a derivative of rival-output with respect to own-

output. Adhering to this convention, a conjecture for �rm i ∈ {1, 2} is some (possibly nonconstant)

term νi = ∂qj/∂qi, where qj is rival output and qi is i's own output. To illustrate, contrast the

Cournot and Bertrand models. A Cournot �rm has a degenerate conjecture (νi = 0), because it

takes rival output as �xed when fashioning a best response. But a Bertrand �rm believes that if it

increases its own output (by lowering its price), then it will steal some sales from its rival (νi < 0).

A CV game is a standard simultaneous-move game that has been extended so that �rms'

conjectures are explicit parameters that can be altered without changing the rules of the game.

Consider the following CV game with di�erentiated duopoly quantity competition. Each �rm i

chooses an output level qi. Inverse demand for �rm i is pi = 1− qi − sqj , where s ∈ (0, 1) denotes

the degree of product substitutability. Production costs are normalized to zero, so i's payo� is

πi(qi, qj) = (1 − qi − sqj)qi. Each �rm i is assumed to have a (constant) conjecture νi = ∂qj/∂qi.

This enters into the �rm's optimization problem, with each i's �rst order condition given by

dπi(qi, qj)

dqi
=
∂πi(qi, qj)

∂qi
+
∂πi(qi, qj)

∂qj
νi = 1− 2qi − sqj − sνiqi = 0 (16)

Thus i's response function is given by R̃i(qj |νi) = (1− sqj)/(2 + sνi). We refer to an intersection of

these response functions as a conjectural variations equilibrium (CVE). If ν = νC = 0, the CVE is

Cournot-Nash; if νB = −s, the CVE is the Bertrand equilibrium.22

Following Bresnahan [1981], a conjecture is consistent if it is correct, meaning that it equals

the slope of the rival's best response function. Letting r̃(νi) ≡ −s/(2 + sνi) denote the (constant)

slope of R̃i conditional on νi, this means that νi is consistent if νi = r̃(νj). If only one �rm

has a consistent conjecture, the result is a Stackelberg equilibrium.23 If the �rms' conjectures are

mutually-consistent, then the resulting equilibrium is a consistent conjectures equilibrium (CCE).

(Technically the CCE concept in Bresnahan [1981] requires only that both conjectures are consistent

within an open neighborhood of the equilibrium, but this is equivalent to global consistency in a

linear game with constant conjectures.) By symmetry, a CCE in this linear model involves the

self-consistent conjecture ν? = r̃(ν?). Solving this quadratic yields ν? = −(1 −
√

1− s2)/s. Since

s ∈ (0, 1), we obtain the strict ordering

21The theory of conjectural variations was �rst formulated by Bowley [1924]. Bresnahan [1981] was among the �rst
to study models with consistent conjectures.

22To see this, note that inverting the demand system (p1, p2) yields Bertrand-style demand functions qi = γ[1 −
s− pi + spj ] for each i, where γ ≡ (1− s2)−1. Thus, in the Bertrand game, �rm i it believes that if it increases qi by
1 (by cutting pi by γ

−1), the resulting change in qj will be γ[s(−γ−1)] = −s.
23For example, the Stackelberg-Cournot equilibrium arises when one �rm (the follower) has conjecture νC and the

other �rm (the leader) has conjecture r̃(νC).
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−1 < νB < r̃(νB) < ν? < r̃(νC) < νC = 0

and hence both Cournot and Bertrand competition involve inconsistent conjectures.24 In general,

CCEs (and CVEs with arbitrary conjectures) are not Nash equilibria of the underlying game. The

arti�ciality of conjectures is a principal reason why many economists have criticized the technique.25

However, we show that conjectural variation can be useful for interpreting Nash equilibria, and can

serve as a reduced form for analyzing games with strategically distorted behavior.

A �rm with a consistent conjecture naturally accounts for strategic e�ects, which is valuable

to the �rm. If its conjecture is inconsistent, then it will either overstate or understate its rival's

competitiveness, as captured by the slope of the rival's reaction function. To illustrate, note that

a higher (lower) conjecture about rival output means the �rm believes its rival will be more ac-

commodating (competitive). Thus if the �rm's conjecture is inconsistently low (high), then it is

overstating (understating) rival competitiveness, and can therefore bene�t from being induced to

behave less (more) competitively.

This is what explains why the jointly-optimal upstream markup looks so di�erent within

di�erent games. In linear Cournot, the �rm's conjecture is inconsistently high (νC > r̃(νC)), sug-

gesting it is understating competition, and can bene�t from behaving more competitively. Thus, the

jointly-optimal upstream markup is negative (tS < 0). By contrast, the Bertrand �rm's conjecture is

inconsistently low (νB < r̃(νB)), implying it is overstating rivals' competitiveness and can thus ben-

e�t from behaving less competitively, which can be accomplished by applying a positive upstream

markup (tS > 0). In either case, the jointly-optimal markup leads the downstream �rm to play the

same equilibrium strategy it would adopt if it had a consistent conjecture. An interpretation is that

the objective of strategic delegation is, in e�ect, to correct an inconsistent conjecture. Noncoopera-

tive double marginalization enhances joint pro�ts when it inadvertently leads the downstream �rm

to play as if it has a �better� conjecture than its actual (degenerate) conjecture.

It is easy to see all of these possibilities within a single framework by returning to the iso-

elastic Cournot game from Example 2. Recall that the jointly optimal transfer price is tS = c1− c2,

and thus the sign of this price depends on the comparison of the �rms' costs. The same comparison

governs the slope of �rm 2's best response function at the equilibrium associated with t = 0. In

particular, this slope is R′2(q∗1(0)) = (c1 + c2)/2c2 − 1. This is equal to zero when c1 = c2, in which

case �rm 1's degenerate conjecture happens to be consistent at the equilibrium, explaining why the

optimal transfer price is exactly zero in this case. On the other hand, the slope is positive when

c2 < c1, in which case the degenerate conjecture is inconsistently low and thus tS is positive, while

the opposite is true when c1 < c2.

24By contrast, if products are undi�erentiated (s = 1), then νB = ν̃ = −1, and thus homogeneous Bertrand
competition yields a CCE.

25See Dockner [1992] for a more detailed overview of the criticisms of conjectural variation models.
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5 Distorted Games

In the previous section, we showed that the joint-pro�t maximizing level of double marginalization

induces the same equilibrium behavior as a consistent conjecture, and that noncooperative double

marginalization is therefore pro�table when the upstream transfer price inadvertently induces the

downstream �rm to behave as if it has a more consistent conjecture. In this section, we introduce a

generalized �distorted game� that nests a wide range of well-known behavior-distorting phenomena

created by third parties, such as double marginalization, vertical restraints, or other mechanisms for

strategic delegation. We synthesize each of these literatures with cooperative double marginalization

by showing that every distortion always engenders downstream equilibria corresponding to consistent

conjectures � Stackelberg equilibria or CCEs � even though all �rms actually maintain ordinary

degenerate Nash conjectures.

First consider a �generalized duopoly game� (GDG) based on the model from Section 3,

but without double marginalization (t = 0). Each �rm i = 1, 2 chooses a strategy ai ∈ Ai to

maximize πi(ai, aj). Assume that assumptions (A1), (A2), and (A5) from Section 3 are satis�ed

for each i. In this game, pro�t maximization for �rm i is characterized by the �rst order condition

∂πi(ai, aj)/∂ai = 0, which pins down a continuously di�erentiable best response function Ri(aj).

Now consider a distorted game based on the GDG. In this game, each �rm's behavior is distorted (e.g.

by double marginalization) via an alteration of its internalized payo�, but the �rm still generates a

total payo� of πi. Formally:

De�nition 1. A distorted game is a perturbation of the generalized duopoly game such that each

�rm i's internalized payo� is altered in such a way that its �rst order conditions now take the form

∂πi(ai, aj)

∂ai
+ ψi(ai, aj , θi) = 0 (17)

for some function ψi and some parameter θi ∈ Θi ⊂ R.

We assume that ψi is continuously di�erentiable in (ai, aj , θi) and strictly monotonic in θi,

and that Θi is compact. Here ψi is a �distortion function,� which we interpret as specifying the

nature of the distortion (e.g. double marginalization versus resale price maintenance). The scalar

θi is a �distortion parameter� that captures the magnitude of the distortion (e.g. the speci�c price

level mandated by a resale price maintenance contract). The best responses pinned down by (17)

are assumed to be unique. As such, each i has a continuously di�erentiable best response function,

denoted R̃i(aj |θi), which generally di�ers from Ri(aj).

The distorted game nests many familiar situations in which downstream competition is

in�uenced by third parties, a few of which are illustrated below. The general approach is similar

to a model considered in Fabinger and Weyl [2013]. They consider the the class of symmetric

quantity-choice games whose equilibria are characterized by conditions of the form εDL = θ, where

L is the Lerner index, εD is demand elasticity, and θ is a �conduct parameter.� In their model,

di�erent values of θ correspond to di�erent games, such as conventional Cournot competition, a CV
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game, or Bertrand competition with di�erentiated products. Our distorted game is essentially a

generalization of this approach, although we focus on a di�erent interpretation of the comparative

statics. Our interpretation is that the underlying game (the GDG) does not vary with θ, but rather

this parameter re�ects the extent to which behavior is being distorted. Consider a few well-known

kinds of distorted games that fall within this general framework:

Competition with Conjectures

Although we are ultimately interested in Nash behavior, it will be useful to compare the

actions of distorted Nash �rms to CV �rms, and thus we begin by showing that the distorted game

nests a generalized CV game based on the GDG. Suppose each �rm i maximizes πi and has a

(generally nonconstant) conjecture νi(ai) = ∂aj(ai)/∂ai about �rm j's response behavior.26 In this

case, pro�t maximization for �rm i is characterized by

∂πi(ai, aj)

∂ai
+
∂πi(ai, aj)

∂aj
νi(ai) = 0 (18)

We will refer to an agent who behaves in this way as a �CV �rm.� A standard Nash �rm will behave

like the CV �rm when the distortion function ψi takes the form

ψi(ai, aj , θi) =
∂πi(ai, aj)

∂aj
fi(ai, θi) (19)

for some function fi and parameter θi such that fi(ai, θi) = νi(ai).

Double Marginalization

Following Section 3, under double marginalization �rm 1 must pay a total transfer price of

the form tX1(a1, a2) to an upstream �rm, where t is the transfer price parameter imposed by an

upstream �rm. To capture this in the distorted game, set θ1 = t and

ψ1(a1, a2, θ1) = −θ1
∂X1(a1, a2)

∂a1
(20)

Delegation to an Agent with Di�erent Preferences

The choice of a1 is delegated to an agent who maximizes some function D(a1, a2, θ1), which

di�ers from π1. For example, similar to Sklivas [1987] and Vickers [1985], suppose that competition

is in prices (ai = pricei) and that the agent exaggerates production costs in its e�ort to maximize

pro�ts (and therefore sets systematically higher prices), so that D takes the form D(a1, a2, θ1) =

π1(a1, a2) − θ1C
(
q1(a1, a2)

)
, where C is a cost function, q1 gives �rm 1's output as a function of

26This is a generalization of the output-choice CV game in Bresnahan [1981].
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(a1, a2), and θ1 > 0. Delegation of this sort is equivalent to a distorted game with distortion function

ψ1(a1, a2, θ1) = −θ1
∂C
(
q1(a1, a2)

)
∂q1

∂q1(a1, a2)

∂a1
(21)

Resale Price Maintenance

Competition is in prices. A supplier employs a resale price maintenance strategy that requires

�rm 1 to set a1 = θ1. Let

ψ1(a1, a2, θ1) = −∂π1(θ1, a2)

∂a1
(22)

for all (a1, a2). Then R̃1(aj |θ1) = θ1 for every aj , as required by the resale price maintenance

contract.

Merger, Collusion, and Horizontal Shareholding

Suppose that each �rm i chooses ai to maximize (1−σj)πi(ai, aj)+σjπj(aj , ai), where σ1, σ2 ∈
[0, 1). If σ1 = σ2 = 1

2 , then the interpretation is that the �rms have merged, or else that they are

colluding. Otherwise the interpretation is that the �rms are involved in horizontal shareholding,

meaning that each �rm i owns a fraction σi of total shares in its rival.27 Let θi = σi/(1 − σj) for

each i. Then this game's equilibrium arises in the distorted game when each ψi is de�ned by

ψi(ai, aj , θi) = θi
∂πj(aj , ai)

∂ai
(23)

5.1 Strategic Distortions Induce Consistent Behavior

Now suppose the distorted game is the second stage in a sequential game. In stage 1, one or both of

the distortion parameters θ1 and θ2 are chosen �strategically� by upstream �rms. This means that

a distinct upstream �rm chooses θi to maximize πi
(
aei (θ), aej(θ)

)
, where

(
ae1(θ), ae2(θ)

)
denotes the

downstream equilibrium generated by θ ≡ (θ1, θ2), which is assumed to be unique and interior for

every θ ∈ Θ1 × Θ2. We can think of πi
(
aei (θ), aej(θ)

)
as the equilibrium joint pro�ts of �rm i and

the upstream �rm (namely the one that chooses θi).

Since ψi is strictly monotonic in θi, it follows from (A2) that R̃i(·|θi) shifts strictly monoton-

ically in θi. Since R̃j is independent of θi, this implies that aei (θ) is strictly monotonic in θi. We

extend assumption (A5) by assuming that, for every θj ∈ Θj , �rm i's Stackelberg objective function

πi(ai, R̃j(ai|θj)) is strictly concave in ai.

Let r̃i(aj |θi) ≡ ∂R̃i(aj |θj)/∂aj for each i. Recall that, in a CV game, �rm i's conjecture about

�rm j is said to be consistent if it equals the slope of j's true best response function (this could

be true globally or merely locally.) Thus, in the distorted game, r̃j(·|θj) would be the (globally)

consistent conjecture about �rm j. With this, we can de�ne a relationship between θi and θj that

is analogous to the notion of conjectural consistency.

27Collusion via mutual shareholding has recently been investigated by Azar et al. [2015].
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De�nition 2. θi is consistent with θj if

ψi(a
e
i (θ), aej(θ), θi) =

πi(a
e
i (θ), aej(θ))

∂aj
r̃j(a

e
i (θ)|θj) (24)

Following (18) and (19), this says that θi induces �rm i to play the same equilibrium strategy

it would adopt if it were a CV �rm with the consistent conjecture νi(·) = r̃j(·|θj). We therefore say

θi induces �consistent behavior.�

We now begin the equilibrium analysis by considering the case in which just one of the

distortion parameters is chosen strategically in the �rst stage, while the other is left exogenous.

(The possibility that one �rm is not distorted at all is a special case.) De�ne ρi by

ρi(θj) = arg max
θi∈Θi

πi
(
aei (θ), aej(θ)

)
(25)

Thus, ρi(θj) is the strategic choice of θi conditional on θj . Note that this maximizer is unique

for every θj ∈ Θj .
28 We do not assume it is interior, however, because an upstream �rm may be

constrained in the extent to which it can distort a downstream �rm. Our �rst result establishes

that ρi(θj) is consistent with θj whenever the constraint on θi is non-binding.

Proposition 4. If ρ1(θ2) is interior, then it is consistent with θ2.

Proof: Let θ = (ρ1(θ2), θ2). Since ρ1(θ2) is interior, it is pinned down by the �rst order

condition

∂π1

(
ae1(θ), ae2(θ)

)
∂a1

(
∂ae1(θ)

∂θ1

)
+
∂π1

(
ae1(θ), ae2(θ)

)
∂a2

(
∂ae2(θ)

∂θ1

)
= 0

⇐⇒ ∂ae1(θ)

∂θ1

[
∂π1

(
ae1(θ), ae2(θ)

)
∂a1

+
∂π1

(
ae1(θ), ae2(θ)

)
∂a2

r̃2(ae1(θ)|θ2)

]
= 0

The bracketed sum must be equal to zero, since ae1(θ) is strictly monotonic in θ1. It follows

that

ψ1

(
ae1(θ), ae2(θ), ρ1(θ2)

)
=
∂π1

(
ae1(θ), ae2(θ)

)
∂a2

r̃2(ae1(θ)|θ2) (26)

Therefore ρ1(θ2) is consistent with θ2. Q.E.D.

Thus a strategic distortion generates consistent behavior by the distorted �rm. We hinted this

result in Section 4 in the special case of double marginalization, but Proposition 4 shows that for any

speci�cation of ψ1, the distortion parameter θ1 will be chosen so that ψ1(·, θ1) generates consistent

behavior in equilibrium. This comports with the strategic delegation literature, which generally

28This follows from the facts that, for every θj ∈ Θj , πi(ai, Rj(ai|θj)) is strictly concave in ai and a
e
i (θ) is strictly

monotonic in θi.
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suggests that di�erent kinds of delegation practices are equivalent when used to strategically ma-

nipulate the behavior of a single downstream �rm: they all induce the Stackelberg equilibrium. The

following corollary provides a very general expression of this result.

Corollary 1. If �rm 2's behavior is not distorted (R̃2(·|θ2) = R2), then a strategic and interior

choice of θ1 generates the Stackelberg equilibrium of the GDG.

This result is unsurprising in light of the strategic delegation literature. But the literature

has not identi�ed an analogous unifying principle for equilibria in which both downstream �rms are

strategically distorted by upstream competitors. This is perhaps due to a conceptual di�culty: a

single distortion makes the distorted �rm act like a Stackelberg leader, but what does it mean for

both downstream �rms to act like Stackelberg leaders? We submit that conjectural consistency �

and in particular mutual consistency � provides the right theoretical machinery for thinking about

this. To that end, now suppose the two-stage game involves competing distortions: θ1 and θ2 are

both chosen strategically (and simultaneously) by upstream competitors in stage 1. That is, for each

i, a distinct upstream �rm chooses θi to maximize πi
(
aei (θ), aej(θ)

)
, taking θj as given. We refer

to an equilibrium of this game as a competing distortions equilibrium, denoted
(
θ∗, ae1(θ∗), ae2(θ∗)

)
.

This game is a generalization of many well-known models from the strategic delegation literature,

such as Bonanno and Vickers [1988], Rey and Stiglitz [1995], Jansen et al. [2007], Fershtman and

Judd [1987] and Gal-Or [1991], among others. Consider the following de�nition:

De�nition 3. The pro�le (θ1, θ2) generates an induced consistent conjectures equilibrium (induced

CCE) if θ1 and θ2 are mutually consistent.

That is, an induced CCE is an equilibrium in which each downstream �rm is induced to play

the same equilibrium strategy it would adopt if it had a (globally) consistent conjecture about its

rival's (distorted) response behavior. This is a natural analogue to the CCE concept from Bresnahan

(1981) although, as discussed below, these concepts do not always produce identical equilibrium

strategies. Our next result is that competing distortions generate an induced CCE whenever they

are interior, which is an immediate implication of Proposition 3.

Proposition 5. Let
(
θ∗, ae1(θ∗), ae2(θ∗)

)
be a competing distortions equilibrium. If θ∗ is interior,

then it generates an induced CCE.

This link between Nash equilibria and the CCE concept is surprising. A common criticism of

conjectural variation analysis is that, when conjectures are supplied arti�cially by the modeler (the

CCE being a special case), the resulting equilibria are in general not Nash equilibria of the underlying

game. In the CCE case, the �rms' behavior appears to correspond to a dynamic interaction that is

not actually being modeled. Accordingly, CCEs do not ordinarily arise organically. But Proposition

5 shows that this is not so when �rms are strategically distorted. On the contrary, in this case CCEs

naturally arise in Nash equilibria. In this situation, Bresnahan's non-Nash CCE concept can serve

as a reduced form analysis of a multi-stage interaction in which Nash �rms are strategically distorted
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in parallel. This also helps to provide a broader intuition for what is happening in the strategic

delegation literature.

Our induced CCE and the CCE concept de�ned in Bresnahan [1981] � henceforth referred

to as the Bresnahan CCE � do not always produce exactly the same downstream equilibrium

strategies, although competing strategic distortions will generally move downstream strategies in

the direction of the Bresnahan CCE.29 In an induced CCE, each �rm behaves in equilibrium as if it

has a consistent conjecture, but its beliefs may be inconsistent elsewhere, i.e. at other points along

its rival's reaction function. This is re�ected in our consistency de�nition, which hinges only on the

value taken by ψi in equilibrium. But, as brie�y noted in Section 4, the Bresnahan CCE requires

that each �rm's conjecture is consistent in an open neighborhood of the equilibrium. (Bresnahan

does not explicitly state his reasoning for imposing this stronger requirement.30) A given distortion

function ψi may lack the �exibility to achieve consistency throughout an open neighborhood of

the equilibrium, which may prevent the game from producing the same downstream strategies as a

Bresnahan CCE. We illustrate this point in Examples 6A and 6B, below.

Nonetheless, the induced CCE exhibits the principal properties that distinguish the Bresnahan

CCE. First, both concepts always have the property that, for each i, the equilibrium is the πi-

maximizing pro�le along j's reaction curve.31 Second, the �rst property does not arise merely by

coincidence. Assuming that each �rm's payo� function is strictly monotonic in its rival's strategy (at

least at the equilibrium point), then in an ordinary (undistorted) Nash game, one of the following

statements will always be false for each i: (1) the equilibrium is i's favorite pro�le along j's reaction

function; or (2) �rm j's reaction function has nonzero slope at the equilibrium. Property (1) can

be true, as in the iso-elastic Cournot game (Example 2) with c1 = c2, but only if i's degenerate

Nash conjecture simply happens to be consistent at the equilibrium, i.e. only if the rival's reaction

function has slope zero at the equilibrium. But this is pure coincidence; it does not re�ect strategic

foresight. Alternatively, if (2) is true, then i can bene�t by moving slightly up or down j's reaction

curve, and so (1) must be false. However, in both an induced CCE and a Bresnahan CCE, both (1)

and (2) are generally true,32 re�ecting equilibrium play that is mutually-consistent due to strategic

anticipation, not by coincidence.

To reconcile the induced CCE with Bresnahan (1981), we de�ne a stronger notion of consis-

tency between the distortion parameters θ1 and θ2. We say that θi is perfectly consistent with θj if

there exists ε > 0 such that ψi satis�es

ψi(ai, R̃j(ai|θj), θi) =
∂πi
(
ai, R̃j(ai|θj)

)
∂aj

r̃j(ai|θj) (27)

29For example, in a Cournot game, the Bresnahan CCE will involve higher output levels than the Nash equilibrium,
and so will any induced CCE.

30On page 936, Bresnahan [1981] notes that this ensures that each �rm i has correct beliefs about all higher-order

derivatives of R̃j at the equilibrium point � not just the �rst derivative � although he does not clarify why he deems
this essential.

31In Bresnahan [1981], this need only be true in an open neighborhood along the rival reaction curve.
32The only exception is that (2) can in principle still be false, in which case the strategic distortion happens to

involve no distortion at all, since the Nash conjecture happens to be correct.
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for all ai such that |ai − aei (θ)| < ε. This says that �rm i is acting like it has correct beliefs about

r̃j(·|θj) at all ai-values within an open neighborhood of its own equilibrium strategy. This is a direct

analogue to the consistency de�nition in Bresnahan [1981]. We then say that θ generates an induced

perfect CCE if θ1 and θ2 are mutually perfectly consistent. An induced perfect CCE therefore yields

a downstream equilibrium corresponding to a Bresnahan CCE. However, competing distortions may

or may not generate an induced perfect CCE, because some ψi functions can achieve consistency

only at one point, which will always be the equilibrium. We illustrate this with two short

examples, only one of which generates an induced perfect CCE. Both examples are based on the lin-

ear Cournot game with di�erentiated products that underpinned the linear CV game from Section 4.

Example 6A (Competing Linear Transfers): Consider the linear quantity-choice CV game

introduced in Section 4, but now assume the �rms have ordinary degenerate conjectures. Recall

that payo�s are πi(qi, qj) = (1 − qi − sqj)qi for each i, where s ∈ (0, 1). Now suppose each i is

double marginalized according to the linear transfer price schedule θiXi(qi, qj) = θiqi, so that

ψi(qi, qj , θi) = −θi. This yields a reaction slope r̃i(qj |θi) = −s/2, which is independent of θi.

Therefore each upstream �rm will strategically induce its downstream partner to behave as if

it has a conjecture of −s/2, which is indeed consistent with its rival's behavior. However, this

induced CCE is still not perfect. We can see this indirectly by noting that −s/2 6= ν?, where

ν? = −(1 −
√

1− s2)/s is the Bresnahan CCE conjecture from the linear CV game based on this

Cournot framework (see Section 4). To see it directly, it can be veri�ed that the perfect consistency

condition (27) is θi = −1
2s

2qi in this model, and clearly there is no θi-value such that this will

be satis�ed throughout an open neighborhood of qi-values. Thus it will be satis�ed only in the

equilibrium. �

Example 6B (Competing Quadratic Transfers): Amend the last example so that each transfer

price schedule takes the quadratic form θiXi(qi, qj) = 1
2sθiq

2
i , and thus ψi(qi, qj , θi) = −sθiqi for

each i. This yields r̃i(qj |θi) = −s/(2+sθi), so the upstream �rms can a�ect reaction function slopes

in this case. The perfect consistency condition (27) reduces to

θi =
−s

2 + sθj
= r̃j(·|θj) (28)

Since this equation is invariant in qi, this says that θi is either always consistent with θj , or

else never consistent. Of course, we know it is consistent at the equilibrium level of qi, and thus it

must be consistent everywhere. Hence the induced CCE is perfect. We could see this indirectly

by noting that symmetry implies both �rms will choose θ∗ such that θ∗ = r̃j(·|θ∗), and solving

this yields θ∗ = ν?. This tells us that each �rm will be induced to act as though it maintains the

Bresnahan CCE conjecture ν?. �

The intuition is the following: as already noted, the downstream behavior underpinning the

24



Bresnahan CCE can be replicated in the distorted game through the appropriate choice of distortion

function. Similarly, each possible distortion mechanism (e.g. resale price maintenance) corresponds

to a particular kind of distortion function. Some of these are equivalent to the CV distortion function

� the implicit speci�cation of ψi in a CV game � as in Example 6B, while others are distinct, as in

Example 6A. By �distinct,� we mean that it distorts the downstream reaction function R̃i(aj |θi) in
a di�erent way � as θi increases, it elicits di�erent measures of �shifting� and �twisting.� Thus, a

change in ψi may in turn change the strategic choice of θj , since upstream �rm j is now choosing

its favorite pro�le along a di�erent reaction function. The result is that the change in ψi ultimately

changes the downstream equilibrium. However, competing distortions generally move downstream

strategies in the direction of the Bresnahan CCE pro�le33.

6 Discussion and Concluding Remarks

Traditional analysis of double marginalization with successive monopolies suggests that the �rms

have an incentive to eliminate it.34 We have shown that this intuition does not hold when down-

stream �rms face competition, whether or not the vertically related �rms act cooperatively to

maximize joint pro�ts. In particular, we provide four novel results which fully describe how double

marginalization operates with downstream oligopoly, both when upstream and downstream �rms

coordinate and when they do not.

First, even if the �rms interact only through noncooperative linear pricing, and even if the

downstream rivals' costs are left exogenous, double marginalization may inadvertently increase joint

pro�ts in many familiar economic scenarios. Second, when double marginalization enhances pro�ts,

it does so by creating a bene�cial strategic e�ect in rival behavior that outweighs the negative direct

e�ect of distorting the downstream �rm's behavior, essentially approximating strategic delegation à

la Bonanno and Vickers [1988]. The relationship between these e�ects is ambiguous and amenable to

analysis using traditional price theoretic tools. Third, many behavior-distorting phenomena created

by third party decision-making, such as double marginalization, vertical restraints, and strategic

delegation are intimately related. We unify such practices in a generalized �distorted game� which

demonstrates that jointly-optimal (i.e. strategic) distortions, no matter their exact nature, are al-

ways those which induce downstream �rms to behave as if they have consistent conjectures about

rival behavior. Fourth, if downstream �rms are strategically distorted in parallel by upstream com-

petitors, then these distortions generate an �induced consistent conjectures equilibrium,� a concept

that closely analogizes � and sometimes coincides with � the CCE concept from Bresnahan [1981].

This is surprising since the induced CCE arises from Nash behavior, whereas Bresnahan's CCE con-

cept is generally regarded as non-Nash. It suggests that the CCE concept can be interpreted as the

reduced form of a multi-stage Nash equilibrium involving competitors who are being strategically

distorted.

33This is clearly true if the distorted game is supermodular, for in this case the nature of a strategic distortion
(whether ai should be increased or decreased) will be the same for all ψi.

34Riordan and Salop [1995] provide an excellent discussion of antitrust perspectives on double marginalization.
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That double marginalization can enhance joint pro�ts when the downstream market involves

a strategic interaction embodies a more general principle that is already known: an agency problem

can be bene�cial to the extent that it facilitates bene�cial commitment and thereby induces a more

desirable equilibrium. This is the logic that underpins the theory of strategic delegation. As Vickers

[1985] pointed out in his seminal paper on delegation, �[i]f control of my decisions is in the hands

of an agent whose preferences are di�erent from my own, I may nevertheless prefer the results to

those that would come about if I took my own decisions. This has some interesting implications

for the theory of the �rm. For example, in markets where �rms are interdependent, it is not

necessarily true that maximum pro�ts are earned by �rms whose objective is pro�t-maximisation.�

However, prior studies applying the idea of strategic delegation to vertical relationships di�er from

our noncooperative analysis in an important respect, namely that they require delegation to be

a credible form of commitment.35 The possibility of credibly committing to non-Nash actions by

using two-part tari�s, manager delegation, or similar techniques has been widely criticized (e.g.,

Katz [1991], Corts and Neher [2003], O'Brien and Sha�er [1992]).

Our results on noncooperative double marginalization are not subject to this credibility prob-

lem. The �rms in our model are, by assumption, unable to coordinate. They cannot commit to

contracts designed to maximize joint pro�ts by taking advantage of strategic e�ects, as re�ected

by the upstream �rm's inability to enter a non-renegotiable two-part tari� contract. Nor is there

any one agent that has the power to unilaterally �overrule� the noncooperative price levels at the

last moment. Thus, in our noncooperative framework, the �rms' misaligned incentives are not the

product of any strategic decisions to partition or manipulate control, but rather are an inciden-

tal consequence of the �rms' inability to coordinate, which is a constraint generated by exogenous

phenomena � e.g. transaction costs, hold-up, or other sources of market failure. The �ipside of

this exogenous misalignment is that the pro�t e�ects of double marginalization are imperfect � it

generally falls short of maximizing joint pro�ts, and in many environments it erodes them. Put

simply, noncooperative double marginalization operates like more credible yet less precise strategic

delegation.

The size and scope of the �rm, then, can depend on indirect strategic e�ects even if we accept

the �credibility critique� that �rms who can coordinate cannot commit to behaving di�erently

than an integrated �rm. If the �rms are unable to coordinate e�ciently when separate (i.e. to

write a contract that will maximize joint pro�ts), they may nonetheless prefer not to integrate

when noncooperative double marginalization induces the downstream �rm to act less competitively,

increasing joint pro�ts via an indirect strategic e�ect. Unlike production externalities which can

35Among many such studies, Fershtman and Judd [1987] and Sklivas [1987] discuss who exactly should be delegated
to, with the latter in particular pointing out that Cournot �rms should delegate to price-setters who place extra weight
on revenues (thereby understating costs) in their e�ort to maximize pro�ts. Alles and Datar [1998] gives a similar
application in an operations/strategic management context, and Jansen et al. [2007], extends the idea to delegates
maximizing market share rather than revenue alone. Rey and Stiglitz [1995] consider a model in which upstream
competitors compete �through� downstream agents (their distributors), using two-part tari�s to strategically distort
downstream pricing by manipulating the agent's costs. For formal investigations of what results principals can achieve
by playing games �through� delegated agents, see Katz [1991] and Rustichini and Prat [2003].
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be mitigated either through Coasean bargaining or integration, the �positive externality� created

incidentally by an upstream markup exists only as a result of noncooperation; it would be eliminated

by vertical integration or by the ability to bargain e�ciently. Therefore, the critique that strategic

delegation is noncredible does not imply that vertically related �rms will always integrate to avoid

being double marginalized.
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