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Abstract
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NIH-funded research 12 to 27% more often. Non-funded research, funded research in
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1 Introduction

University research is often valuable in industry, particularly in innovative sectors (e.g.,

Owen-Smith et al. [2002], Stokes [1997]). This research di�uses principally through pub-

lished research articles (Cohen et al. [2002]). Academic publications generate hypothe-

ses worth exploring, refute unpromising paths, provide tools to speed development,

suggest techniques to aid laboratory or statistical work, and create basic pieces of sci-

enti�c knowledge for recombination. Future researchers more easily build on research

that is clearly presented, widely promulgated, and codi�ed in a useful way (Mokyr

[2002], Murray and Stern [2007]).

Since a primary vector for industry to learn about frontier research is scienti�c

journals, the academic norms that determine journal access and pricing are particularly

important. Unlike the predominant practice in economics, public working papers and

freely accessible published journal articles are rare in most �elds. In 2006, only 15%

of all scienti�c articles were freely accessible online; by 2013, only 24% were (Björk

et al. [2009], Khabsa and Giles [2014]). Why? Promotion and status in academia

require publication in elite journals in one's �eld. Sticky status gives publishers of

these journals market power. Private publishers and scienti�c societies take advantage

of this market power, often by charging high per-article fees to ensure institutional

libraries maintain subscriptions (Jeon and Rochet [2010]). These costs arti�cially limit

inventor access to academic results.

Do costly journals harm private-sector innovation? We examine this question

with a natural experiment. In January 2008, the NIH announced that any funded

article accepted for publication after April 7, 2008 must be archived in the open access
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PubMed Central (�PMC�) database within 12 months of publication.1 Most non-NIH-

funded biomedical and biotech articles were not then, and are not now, free to read.

The NIH mandate proved controversial on two grounds. First, scholarly journals

have costs. Mandates shift the costs of these journals from readers, including the

private sector, to authors and funders. This is especially problematic for underfunded

institutions (Frank [2013]). Second, there is surprisingly little empirical evidence of any

positive bene�t from open access. The most credible estimates �nd that open access

causes only a small increase in academic citations.2 The case for open access is limited

if its e�ects are mainly distributional transfers from industry to publishers, with no real

change in the rate of innovation: someone must pay the �xed cost of the journal.

In Section 2, we therefore introduce a model of inventor search suggesting how

the academic journal pricing structure can generate large welfare harms. In particular,

journal market power causes both transfers from industry to publishers and reduces

search for useful knowledge by inventors. Even cheap articles - $40 would not be an

unusual price - can cause substantial social harm by changing search behavior. Guided

by the model, we empirically investigate how the NIH mandate changed the use of

research in patented inventions. We use a novel coarse matching approach to search

the text of all patent applications for references to any article in 43 top medical journals

since 2005. These in-text citations, though computationally challenging to extract, have

1Similar mandates exist from organizations including the University of California, the Howard
Hughes Institute, the Wellcome Trust, and MIT (Suber [2012]). Throughout, we use �open access�
and �freely available online� synonymously; of course, there are many de�nitions of open access, some
much more restrictive than ours. See, e.g., Harnad et al. [2004].

2Davis et al. [2008] randomize the free journal-website availability of a sample of articles and �nd no
di�erence in academic citations one year out. Using a large panel of science articles with within-journal
open access variation, McCabe and Snyder [2014] �nd an open access citation advantage of only 8%.
Kim [2012] �nds a slightly larger e�ect on social science articles, taking advantage of quasirandom
variation in SSRN article acquisition. Gaule and Maystre [2011] control for selection into open access
with an instrument based on lab �nancial resources, and �nd no e�ect of open access on citation. Some
contrary evidence exists (Gargouri et al. [2010], Evans and Reimer [2009]) although, as Swan [2010]
and McCabe and Snyder [2014] point out, studies which �nd large e�ects of open access on academic
citation tend to have serious identi�cation concerns.
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many advantages over the commonly-used �front page� prior art citations. The overlap

between in-text citations and front page citations is very low. Further, there are both

legal and empirical reasons to believe in-text citations are more correlated with the

actual knowledge used by the inventor. To our knowledge, we are the �rst to extract

and use in-text citations in any systematic way. We discuss this data source in detail

in Section 3.

In Section 4, we �rst estimate a di�erence-in-di�erence in patent citation propen-

sity for articles published before and after April 2008, with and without NIH funding.

Second, we take advantage of a set of journals that make nearly all articles free, no mat-

ter what. Because all research is freely available in these journals, the NIH mandate

did not change the de facto price of articles. This permits the estimation of a triple

di�erence, looking at how the 2008 mandate a�ected patent citations to NIH funded

articles published in journals a�ected by the policy versus those that were not. A triple

di�erence ensures that our �rst estimation strategy does not simply pick up increased

NIH funding for more applied projects, among similar concerns. Both estimates give

similar results, with open access causing patents to cite articles 12 to 27 percent more

often. As the policy only led to a 50 percentage point relative increase in free avail-

ability compared with non-funded articles, we argue this is a lower bound on the true

e�ect of open access. With subsample analyses, we rule out that low-quality patents

drive our main e�ect.

In Section 5, we conclude by discussing the implications of our results. Which

�rms are harmed most by the current academic norms? If industrial innovation is

harmed in a substantive way by the academic journal system, what alternative funding

mechanism ought we pursue to cover the �xed costs of journals? We argue that the

constrained �rst-best is unlikely to be achieved by industry coordination alone. That

said, we discuss a number of options that can increase industry access without negatively
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burdening publishers, including scienti�c societies, who rely on subscription revenue.

1.1 Prior Literature

This paper is, to our knowledge, the �rst broad empirical investigation of how open

access a�ects industry, with direct implications for the organization of academic pub-

lishing. There is a large complementary literature showing how similar openness con-

straints, in a general sense, limit the use of science.3 Furman and Stern [2011] show

that storing biomaterial in easy-to-access locations increases its use by 50 to 125 per-

cent. Murray et al. [2012] show that transgenic mice with fewer IP restrictions were

used more often in studies, especially applied ones. Williams [2013] studies the use

of decoded genes from the Human Genome Project and Celera. Genes decoded �rst

by the HGP, which were not bound by any IP, were studied and used in products

like diagnostic tests more often. Sampat and Williams [2014], however, �nd that gene

patent grants, instrumented using the variable strictness of patent examiners, do not

a�ect follow-on innovation. They argue that the patentholder optimally allows research

which increases the patent's value.

Overall, the existing literature on scienti�c openness �nds harms when the party

choosing the extent of openness prefers to limit knowledge di�usion and instead earn

rents along an alternate dimension. In our context, publishers earn most of their revenue

from institutional subscriptions. Lower per-article prices cause industry to use more

science, but also limit pricing power for university subscriptions. Therefore, publishers

3Earlier research on the direct question of how academic open access a�ects non-academic actors
is very limited. Hardisty and Haaga [2008] send links to practitioners for new articles in the Journal

of Clinical Psychology, some of which link to gated articles and some of which link to freely available
ones. The practitioners who were sent the freely available article links were much more likely to read
the emailed articles, and further were more likely to begin recommending frontier treatments to the
patients. Ware and Monkman [2009] survey private sector researchers in the UK and �nd that over half
of the high tech, research-using small businesses surveyed had di�culty accessing academic research
useful to their business; a similar survey by Houghton et al. [2011] �nds that 68% of Danish �rms
report access di�culty.
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keep per article prices high despite the deadweight loss. Even university researchers

who care about the private sector submit research to expensive journals because norms

within academia require publication in highly-prestigious rather than highly-accessible

venues. Both our theory and our empirical estimates suggest this norm may have serious

consequences for industrial use of academic science..

Norms and institutions concerning commercialization of university research have

also been widely studied. For instance, Hvide and Jones [2017] show that entrepreneur-

ship, licensing, and patenting by university researchers falls after a Norwegian policy

change decreased academic earnings from the commercialization of their research. The

Bayh-Dole Act famously encouraged universities to commercialize by changing intellec-

tual property standards (Berman [2008], Mowery and Sampat [2005]).

Although commercialization is a particularly visible venue for the e�ect of aca-

demic research on industry, di�usion of knowledge in scenti�c documents indirectly

a�ects many more innovative �rms. A survey of R&D managers (Cohen et al. [2002])

�nds that a third of industry R&D projects use public sector research �ndings, and over

a �fth use public sector instruments and techniques. Their survey respondents claim

publications and conferences are much more important than licensing, patents, or the

hiring of recent graduates for incorporating research results and tools. Ahmadpoor and

Jones [2017] consider the network of citations, where an invention draws on a invention

that itself drew on academic research, and �nd that at least 60% of all inventions can be

traced back to published research. Iaria et al. [2018] investigate the collapse in interna-

tional communication of scienti�c results during World War I, and �nd that scientists

who were particularly reliant on journal articles from blockaded countries before the

War see permanent and severe declines in their research productivity after their access

to continuing research from their nations is cut o�. Going even further back, the steep

decline in the price of books induced by Gutenberg may have caused a welfare increase
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more substantial than that of the modern computer (Dittmar [2020]).

2 A Stylized Model of Academic Search

How does the market power possessed by high-prestige journals a�ect industry re-

searchers? Consider the following letter from a private-sector biopharma consultant,

published in the journal Nature Biotechnology (Lyman [2011]):

�The majority of companies have no libraries to speak of and no librarians

to help with literature searches. The availability of online journals is insuf-

�cient and funds for purchasing access to papers on an individual basis are

limited. In one case, a company su�ered a six-month setback to a drug de-

velopment program because a paper was missed in an inaccessible journal.

The central question that I raised in my op-ed piece was, at a time when

more and more papers are published, when information overload is a given,

does a lack of access to the information become an equally large problem?

The answer from the community was a vociferous yes.

I've been fortunate to have access to worldclass libraries at every stage of

my career. As a result, I learned that being widely read has signi�cant

advantages. It enables the formation of new and fruitful collaborations. It

facilitates your ability to make connections, to see new relationships and

to partake of a bigger view. This larger vision, in turn, can lead to novel

insights and spur innovative discoveries. As I noted previously, keeping up

with advances in biomedicine has become increasingly di�cult in recent

years. The overlapping nature of disciplines within the biological sciences

means that someone developing a new cancer treatment needs to stay in-

formed about speci�c areas of biochemistry, genetics, toxicology, computa-
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tional biology, developmental biology, cell biology, immunology and stem

cell biology as well as clinical developments. This is in addition to keeping

up with general trends in the biotech industry as well as technical advances

in experimental reagents, devices, and methodology.�

In this mental model of the invention production function, private sector re-

searchers begin with ideas. The reader �needs to stay informed� about developments in

many journals to create more valuable inventions. It is ex-ante di�cult to know which

article will contain a useful piece of knowledge. Therefore, �being widely read� can �lead

to novel insights and spur innovative discoveries.� Subscriptions are too expensive for

small �rms since useful information is found in many di�erent journals. Purchasing

individual articles is too expensive since many articles must be read to learn which is

useful.

Let us expand that qualitative model into a formal model of search. A formal

model shows the e�ect of the journal pricing system on di�erent types of �rms and

research, and will help interpret some of the empirical parameters we estimate in Section

4. Our model will have three basic properties.

First, journal publishers have market power and hence can price above cost. Jeon

and Menicucci [2006] note that journal subscription prices have been rising at more than

twice the rate of academic book prices. A reasonable conjecture is that the relative cost

of publishing articles versus books has not changed greatly over time. Therefore, the

di�erential in�ation is ipso facto evidence of increased markups. It is critical to note

that this market power exists solely because university researchers are obligated by the

academic incentive structure to send their research to high-prestige journals. Without

this market power, academic research is freely available, with the costs of peer review

and distribution covered by institutions who either can be funded by non-distortionary

taxes or the sale of complements. Market power is not necessarily socially costly, of
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course; consider the case of a monopolist that perfectly price discriminates. Whether

journals just redistribute from industry to publishers, or cause deadweight loss, will be

identi�able in the model.

Second, we permit publishers to both bundle articles into subscriptions and sell

access a la carte. The economics of bundling zero marginal cost goods is straightforward

(Bakos and Brynjolfsson [1999]). A law of large numbers result implies that bundling

is always optimal when the values of individual goods are independent. Further, this

bundling lowers consumer surplus. When there are many market segments with corre-

lated demand in each segment, such as large institutions with high willingness-to-pay

for all articles and small �rms with low willingness-to-pay for most articles, publishers

optimally sell the full bundle to the core market, and o�er a menu of progressively

smaller bundles for the periphery market. In the limit, the smaller bundles become a

la carte article pricing. This theory predicts exactly the pricing strategy of academic

journals. We therefore do not model the publisher pricing problem directly. Rather, we

just assume that �rms can either buy a subscription or purchase articles individually.

The prices of subscriptions and articles are exogenous to the �rm's own demand.

Third, researchers can search academic literature for knowledge that improves

the value of their invention. Value increases because the time necessary to invent

falls, improvements to the �nal product are suggested, or dead-end research paths

are avoided. The researchers do not know exactly which article might contain that

knowledge, if any.

Formally, assume inventors search for knowledge as follows:

Assumption 1. Let an invention to inventor i in the absence of academic research be

worth Xi. Let the value of the invention if academic research a is accessed be Xai ≥ Xi,

where Xai −Xi is a random variable with distribution F .

Assumption 1 says that useful academic knowledge improves the private prof-
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itability of a �rm's invention by some random value with known distribution. This

distribution will be quite wide if the academic knowledge a is, for instance, the type

of idea one might get by browsing the new issue of a journal. It may be quite tight

if the researcher is trying to �gure out a particular statistical technique, or method of

generating a chemical compound, but simply does not know where to look.

Assumption 2. Let there be a set of journal articles J such that the probability article

j ∈ J includes useful information a is paj, disjoint across all j, such that
∑

j paj ≤ 1.

Assumption 2 says that the location of this valuable academic knowledge can only

be found by searching the academic corpus. If
∑

j paj is strictly less than 1, then there

is some chance that no article contains the useful knowledge.

Assumption 3. Let (1− sij)cij be the de facto cost of accessing information article j,

where cij is the stated cost of j to inventor i and sij is the probability that the information

in j spills over to inventor i without them actually paying for the article. If an inventor

is at an institution with a subscription to the journal where j is published, then cij = 0.

Assumption 3 gives the cost of searching a particular article, which is free if

the information spills over locally or the institution has a subscription, and positive

otherwise. Of course, researchers may also email authors for an article, or travel to a

university library. The model only requires that those with institutional subscriptions

access the article at lower cost.

Assumption 4. Let G ≥ 0 be a multiplier on X which converts private values of an

idea to the social value of that idea.

Assumption 4 says that the private and social surplus of invention are misaligned.

If invention generates spillovers and consumer surplus, then G ≥ 1. If the invention

would have been created by some other �rm in the near future anyway, and thus inven-

tion is just business stealing, then G ≤ 1.
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As far as timing is concerned, an inventor will simultaneously choose how many

articles to purchase and read, given their belief about the expected bene�t of �nding

useful academic knowledge a.4 That is, inventors solve:

max
Ij

∑
j∈J

Ij[paj((E[Xai −Xi])− (1− sij)cij)]

where Ij is the indicator function equal to 1 if inventors read article j. Since paj are

disjoint across j, the maximand involves buying all articles such that

paj(E[Xai −Xi]) ≥ (1− sij)cij

Under an open access regime, all articles have cij = 0,∀i, j, hence inventors buy all

articles such that

paj(E[Xai −Xi]) ≥ 0

That is, they read everything even potentially useful. Note that c is a transfer from the

inventor to the journal and hence does not a�ect social welfare.

The previous two inequalities imply that the di�erence in social welfare generated

by �rm i under an open access regime (the �value of open access�) is

G×
∫

(Xai −Xi)dF ×
∑

0≤paj(E[Xai−Xi])≤(1−sij)cij

paj

which is simply the expected private value gain if a is known times the probability a is

learned only under open access times the social value multiplier G.

4Bryan [2020] solve for the probability a prize is found with sequential, rather than simultaneous,
search on a partition. Costly sequential search �nds weakly more articles than simultaneous search,
hence the bene�t of open access is weakly lower. Nonetheless, the comparative statics in Proposition
1 remain identical. In particular, for any reward and search cost, there remains a calculable cuto�
article which is not purchased, the number of articles increases in the payo�, decreases in the cost of
search, and increases in the coarseness of the partition.
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Let Ī be the set of inventors with institutional access to research. For these

researchers, the mean value of knowledge transfer from academia to their inventions is

G× Ei∈Ī(E[Xai −Xi])×
∑

paj

which is the expectation over all �rms that have institutional subscriptions of the ex-

pected increase in idea value due to academic knowledge times the probability the

relevant knowledge is contained in some journal times the social value multiplier.

Let us �rst show which �rms bene�t most from open access:

Proposition 1. The value of open access to a given �rm i is

1) increasing and then decreasing in a step function in Xai −Xi

2) increasing in the coarsening of pa

3) increasing in the social value multiplier G

4) increasing in cij

5) decreasing in sij

Proof. 1) If

E[Xai −Xi] < min
j

(1− sij)cij
paj

then increasing E[Xai −Xi] by ε does not change which articles are bought, but does

increase G × E[Xai − Xi] and hence the total value of academic knowledge. On the

other hand, if

E[Xai −Xi] = min
j

(1− sij)cij
paj

then increasing E[Xai−Xi] by ε means that the least valuable academic article is worth

enough that it would have been bought by the inventor even without open access, hence

open access has less total value. The step-like function of the value of open access in

E[Xai −Xi] can be proven inductively in an analogous manner.
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2) Holding
∑
paj constant, but letting pa be a more coarse partition weakly increases

∑
0≤pajE[Xai−Xi]≤(1−sij)cij

paj

and hence weakly increases the value of open access.

3) Trivial.

4) Higher costs per article increase
∑

0≤pajE(Xai−Xi)≤(1−sij)cij paj and hence the value of

open access.

5) Analogous to 4.

That is, open access is more valuable if inventors without institutional subscrip-

tions are using knowledge that is neither too unimportant (in which case open access

is of little consequence) nor too valuable (in which case the private sector is already

buying everything); if it is not clear which particular article contains useful knowledge;

if the social value of inventions is much higher than the private value; if articles are

costly; and if spillovers are inconsequential. Since social value is simply a multiple of

private value, the societal value of open access has the same �ve comparative statics.

Consider now the expected value of additional knowledge found under open ac-

cess. Those with institutional access search everything, and always �nd a if it exists.

Therefore, integrating over all institutional researchers Ī, the mean expected value of

knowledge �rms learn from academia is

Ei∈ĪE[Xai −Xi]

Those without institutional access only search if the idea they are looking for is suf-

�ciently valuable to make search worthwhile. The mean expected value of knowledge
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learned by these �rms when there is no open access is

Ei 6∈I|E[Xai−Xi]≥(1−sij)cijE[Xai −Xi]

Finally, the expected value of knowledge learned only under an open access mandate

for researchers without institutional access is

Ei 6∈I|E[Xai−Xi]<(1−sij)cijE[Xai −Xi]

Proposition 2. The expected value of additional knowledge learned only following an

open access mandate is

1) lower than the expected value of knowledge learned by the same �rm when access is

costly

2) potentially higher than the mean value of knowledge learned by all �rms when access

is costly

Proof. 1) Immediate; high value knowledge will induce search even when researchers

have to pay for access.

2) Without open access, let p1 be the proportion of all �rms with institutional access,

and p2 be the proportion of all �rms such that E[Xai − Xi] ≥ (1 − sij)cij. The mean

value of knowledge found without open access is

p1

p1 + p2

Ei∈ĪE[Xai −Xi] +
p2

p1 + p2

Ei 6∈I|E[Xai−Xi]≥(1−sij)cijE[Xai −Xi]

Additional knowledge found following open access has expected value

Ei 6∈I|E[Xai−Xi]<(1−sij)cijE[Xai −Xi]
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The latter equation can be greater than the former if three necessary conditions hold.

First, many inventions come from inventors with institutional access (p1 is high). Sec-

ond, inventors without institutional subscriptions are using academic knowledge in at

least as valuable ways as those with institutional subscriptions (Ei 6∈IE[Xai − Xi] >

Ei∈IE[Xai − Xi]). Third, either the spillover-adjusted de facto cost of articles is high

or the potential location of useful information is dispersed.

The second statement in Proposition 2 may be surprising. It says that the addi-

tional knowledge found only under open access may be, on average, more valuable than

the average piece of knowledge found when academic journals are costly.

The intuition behind that result is straightforward. A given �rm only searches if

the expected value of what they learn exceeds the search cost to learn it. Therefore,

if a given �rm has to pay to search, they no longer search for and �nd less valuable

knowledge. The additional knowledge learned because of open access will have lower

expected value for any given �rm than the knowledge they learn when articles are

costly. However, open access does not induce extra learning by all �rms, but only by

�rms who found it too expensive to search when articles were costly. If these �rms use

knowledge in valuable ways on average compared to the mix of �rms with institutional

subscriptions and �rms who perform costly search without open access, then the average

knowledge learned due to open access can be more valuable than the average knowledge

learned by all �rms when search was costly.

This counterintuitive outcome is most likely to occur when �rms with journal sub-

scriptions have many low-value uses of knowledge, �rms without journal subscriptions

have many uses of knowledge that are valuable but not too valuable, the cost of buying

articles is high, and the set of journals where useful information may be found is large.

With this theory as a guide, let us examine the case of the NIH open access

mandate empirically. We will clarify in the data section how our empirical objects
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relate to the theoretical variables above.

3 Data

Our data consists of a sample of academic research articles, dummies denoting article

availability in open access repositories, and a sample of patent applications.

We examine 132,872 research articles appearing in 43 prominent medical and

biotechnology journals published between 2005 and 2012.5 For each article, we ex-

tract the country of the �rst author's a�liation, the a�liated state if the author is

in the U.S., a dummy indicating whether the author reports funding from the NIH,

the journal name, the number of academic citations (cites given in the bibliography of

another academic article) as of July 2014, a dummy denoting open access availability

via PubMed Central (PMC), in which case we can see the exact date the article was

made free-to-read, and a dummy denoting availability via Pubmed's broader �Free Full

Text� (FFT) category as of June 2013.6 The FFT category is nearly identical to the

set of articles one could �nd freely available anywhere online, and would include, e.g.,

an article freely available on a publisher's website which was not deposited in PubMed

Central.7 PubMed and PMC are by far the most commonly accessed medical research

databases in the world, with PMC searches alone resulting in over one million article

5The journals consist of prominent general interest publications (e.g., The New England Journal
of Medicine, Lancet), top �eld journals (Hematology, Immunity) and 10 highly-cited biotechnology
journals (J. Biotechnology, Tissue Engineering). Exact details of our sample are available in the online
appendix.

6For 3002 articles, we are unable to extract author location, and for 2253 we were unable to extract
the number of academic citations. In general, this missing data refers to editorials and other types of
articles which were miscoded as being research-oriented.

7Optimally, we would know the exact date every article was available anywhere online, rather than
just the fact that it was available freely as of 2013. However, almost all of the NIH-funded articles are
deposited directly into PubMed Central, and we can observe that the deposit date is nearly always
within 6 to 18 months following publication. For non-NIH-funded articles, anecdotally many of these
were made freely available only in 2011 or 2012, meaning that our estimate of the di�erential open
access e�ect generated by the NIH policy may be too conservative. Cutting o� citations as of 2015
means our study is not a�ected by Sci-Hub and other quasi-legal websites o�ering free scienti�c articles.
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views per day (Blumenthal and Freiburger [2012]), a number that has been growing

rapidly since 2008 (Online Appendix Figure A1).

Our patent application sample consists of the raw text of all U.S. patent ap-

plications since 2005 which are public as of March 19, 2015.8 This sample includes

2,989,005 applications in over 200 gigabytes of weekly XML compilations produced by

the USPTO. From this sample, we extract the names and locations of all authors, the

name and location of all assignees, and the patent classes and subclasses. We further

extract, in May 2015 and August 2017, whether the patent has been granted, and how

many related applications have been �led with foreign patent o�ces. Note that patent

applications are generally not made public until 18 months after the application is sub-

mitted. Further, many applicants request secrecy for an even longer period. For this

reason, as we reach the end of our sample, we are observing fewer and fewer appli-

cations. For every assigned patent, we algorithmically construct dummies indicating

whether the assignee is a corporation, a major biotech or pharmaceutical corporation,

a university, a government agency, or an individual. For 98.5% of the assigned citing

patents, we are able to code them into at least one of those categories.9

To link the two datasets, we develop a custom coarse matching algorithm which

operates on the raw speci�cation text of the patent applications. Citations in the text of

a patent are not coded in a standardized way. Instead, references are strewn throughout

the speci�cation text in a wide variety of formats, sometimes including article titles and

full bibliographic information, and sometimes in a much more informal format. Even

journal names are not referred to in a standard way; the New England Journal of

Medicine will be referred to as NEJM in one patent, New Eng. J. Med. in another,

and with its unabbreviated title in a third. Full details of our matching algorithm are

8For readability, throughout we will use �patent� and �patent application� simultaneously, though
all of our data refers to patent applications unless noted otherwise.

9Patents can have multiple assignees; just over 500 of our patents are assigned both to a corporation
and to a university. We discuss the details of the dummy construction in the online Appendix.
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left to the online appendix, but the basic idea is to search chunks of patent text for

nearly-adjacent appearances of the article year, one of a large number of abbreviations

or acronyms for the publishing journal, the �rst author's last name, and/or the �rst

few words of the article title, tightening the requirements for articles where the �rst

author has a particularly common last name. This method naturally involves a tradeo�

between Type I and Type II errors, and we have chosen to be conservative in identifying

matches. Manual investigation suggests that over 99% of our claimed patent-paper

matches were in fact correctly matched.

Minimizing false positives means that we miss some matches; for instance, �In

1989 Stephan J. Weiss in the New England Journal of Medicine conducted bacterial

sensitivity studies on E. Coli and toxicity on tissue in guinea-pigs� in patent application

12/101,775 is too vague, lacking both an article title and a journal issue number, for

our algorithm to match with a speci�c article. However, manually investigating a large

sample of patent texts, we found only a small number of matches that would be missed

by our algorithm; these Type 2 errors are generally caused by misspellings or special

characters in the author name or article title.

The algorithm identi�es 28,136 patents citing at least one article in our sample,

with 63,106 total citations of academic papers.10 22,611 academic papers, or 17 percent

of our sample, receive at least one citation; for our oldest cohort of papers, from 2005,

more than 28 percent are cited at least once. The matches are almost entirely medical-

related, as would be expected: over 91 percent of the patents come from just six primary

patent classes.11 No more than 2 percent of the matches, and by our best estimate much

10Naturally, if a single patent application cites the same academic paper multiple times, this counts
as only one citation. Further, we drop all applications that are continuations of applications already
in our sample.

11424 (Drug, bio-a�ecting and body treating compositions), 435 (Chemistry: molecular biology and
microbiology), 506 (Combinatorial chemistry technology: method, library, apparatus), 514 (Drug,
bio-a�ecting and body treating compositions), 600 (Surgery), 800 (Multicellular living organisms and
unmodi�ed parts thereof and related processes). 424 and the related class 514 alone make up 63% of
the citing patents.
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less than that, are �self-cites� where the article author is also a patentee.12

3.1 Why In-Text Rather Than Front Page Citations

The most common proxy for the scienti�c base on which an invention is built are the

�front page� prior art citations, particularly citations to academic research (e.g., Fleming

and Sorenson [2004], Azoulay et al. [2015]). Front page citations are derived from

documents listed by patent applicants on their Invention Disclosure Statement, or are

added by patent examiners. We use in-text citations, extracted from the speci�cation

text of the patent, rather than front page citations for both practical and substantive

reasons.

The practical reason is the long lag between application and patent grant. Many

studies, including ours, study very recent policy changes for which the application-to-

grant delay binds. Patent applications do not contain front page references. In-text

citations allow us to investigate the �paper trail of knowledge� even when all we have

are patent applications. The substantive reason concerns the meaning of a patent

citation. The closest object to the learned knowledge �a� in our theoretical model is

any knowledge learned from academia, by the inventor, which increases the value of the

patent in some way.

Consider �rst front page citations. Examiner-added citations, of course, make up

a portion of front page prior art, and they are by de�nition not known by the inventor

(e.g., Cotropia et al. [2013], Sampat [2010], Alcacer et al. [2009]). More importantly,

front page citations are legally consequential and hence are often added by patent

drafters and patent attorneys well after the actual invention in question has been cre-

ated. The reason is that U.S. patent applicants face a �duty of disclosure.� This duty

requires disclosure of any known invention or publication relevant to the patentability

12The online appendix contains further details on self-citations.
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of the patent's claims. To put it in academic terms, front page prior art resembles

a list of papers similar to one's own, as determined by the authors, their conference

attendees, and the journal editor they send the paper to.

The situation with in-text citations is very di�erent. The speci�cation is legally

required to include the background of the invention, show how the invention solves

a useful problem, and show how a person skilled in the art can make and use the

invention without excessive experimentation. Though the applicant can describe the

invention's background and method of construction using text and graphics, it is often

easier to �incorporate by reference� (U.S. 37 CFR 1.57). That is, an applicant can simply

refer to an earlier patent or an academic article when pointing to details necessary to

understand or construct their invention. As these references are both technical and not

as legally consequential as front page references, they are less likely to be added by

patent attorneys. To again put things in academic terms, in-text citations play a role

much closer to how citations are used in academic papers: a list of motivations, tools,

similar work, and so on.

The di�erence between front page and in-text citations is not merely theoretical.

Consider as an example patent application 11/407,702:

�The requirement of positive GLI function for RAS action in human melanomas

raised the possibility that tumor induced by direct oncogenic activation

of RAS signaling could require SHH-GLI pathway function. To test this

idea primary and metastatic melanomas were collected from mice express-

ing oncogenic NRASQ61K from the tyrosinase promoter (Ackermann, J. et

al. Metastasizing melanoma formation caused by expression of activated

N-RasQ61K on an INK4a-de�cient background. Cancer Res. 65, 4005-4011

(2005)).�

This 2005 article by Ackermann et al, on a technique used to generate oncogenic mice,
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is cited seven times at various parts of the patent application speci�cation, and the

speci�cation of the granted patent retains all of these. Nonetheless, the prior art for

this patent does not include the Ackermann article.13

This distinction is not unusual. In our sample, restricting to applications that

have been granted, 73 percent of the in-text citations do not appear on the front page

of the granted patent. Going the other direction, 82 percent of the front page citations

do not appear in the patent speci�cation. These discrepancies exist even though the

matched list of papers in the application speci�cation and grant speci�cation overlap

almost perfectly, and the exact same matching algorithm is used on both datasets.14

Front page citations, of course, have a long and well-validated history among

innovation scholars (e.g., Ja�e et al. [1993], Narin [1994]). They also have a number

of skeptics, who have shown empirically that, for the reasons mentioned above, front

page citations do not measure knowledge �ow in the same manner as academic citations

(Roach and Cohen [2013], Tijssen [2002], Meyer [2000]). In-text citations, purely on

legal grounds, ought better measure real knowledge �ows. In a companion paper (Bryan

et al. [2020]), we empirically show that in-text citations are more closely linked to the

knowledge of inventors and the �rm's reliance on academia as a source of spillovers,

while front page citations are more closely linked to patent value. This paper also

documents the empirics of in-text citations across a variety of academic �elds going

back more than 30 years, and describes more fully the legal interpretation of each type

of citation.

Although we contend that in-text citations better measure actual knowledge trans-

13The initial list of references forming the base of the non-patent prior art list was not even submitted
to the USPTO until more than three years after the original patent application. The USPTO Public
PAIR dataset includes the Image File Wrappers with these dates.

14Over 100 randomly selected patents were also investigated by hand, to ensure that these �gures
do not simply re�ect error in the matching algorithm; from that sample, we found zero discrepancies
relevant to the two comparisons described above. In-text and front page references do share some
properties in common, such as their skewness: see Appendix Figure A6.
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fer to inventors than front page citations, the broader question of how knowledge trans-

fer relates to the level or direction of innovation is one that has long bedeviled the

innovation literature. We do not claim to have solved the problem of identifying how

much given knowledge inputs contribute to a given invention. Though revealed prefer-

ence as in our model suggests that cited academic knowledge must have some value -

otherwise why would inventors spend time and money acquiring it? - the nonexistent

�paper trail of knowledge� is challenging to track. For this reason, it is important to

caveat that our results directly only measure increased citation not increased innova-

tion. We investigate further in Section 4.2 why the former reasonably proxies for the

latter.

3.2 Summary Statistics and Estimation Technique

3.2.1 Summary Statistics

Tables 1 and 2 give summary statistics for articles and the patent applications which

cite them. Articles in our sample receive a mean of .48 patent citations. For articles

written in 2005, which have had the most time to collect citations, the mean number

of citations is just over 1. Nearly 37 percent of the articles are funded by the NIH,

a number which is roughly constant from 2005 to 2012 (Online Appendix Figure A2).

54 percent of the articles are eventually freely available on the internet, though this

�gure masks substantial heterogeneity across journals; for instance, the New England

Journal of Medicine has made its articles freely available six months after publication

throughout our sample period, while the Journal of Neurochemistry generally makes

archives freely available only when required by a funder.

Among patent applications, 62.3% are assigned in the initial application. Of those,

corporations and universities make up over 96 percent of all assignees. The �rst inventor
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is in the United States on 64.8% of the citing patents. Most knowledge transfer from

academic articles to patents takes place at a distance; on only 49% of the citing patents

are the �rst inventor and the article �rst author in the same country, and only 18% in

the same state (if American) or same country (otherwise). Most of the applications are

not granted within the timeframe of our dataset: 31.2% are granted by March 2015,

and 48.7% by August 2017.

To ensure that our patent-paper matches are not simply re�ecting low-value or

unusual patent applications, we can investigate geographic and other characteristics of

the matched sample. Online Appendix Table A11 shows which countries and states

do the most medical research in top journals, and which produce the most patents in

our dataset citing that frontier research. The following facts are of note. First, Mas-

sachusetts, especially when it comes to patented science, stands out. If Massachusetts

were a country, it would produce �ve times more research-citing patents per capita than

any other country. Second, though there is a correlation between research output and

patenting activity, it is not one-to-one. New Jersey, New Hampshire, California, Israel,

Singapore and Belgium all produce many more research-citing patents than would be

expected given their academic research output.15 Locations with large government or

institutional medical research centers like D.C., Maryland, Minnesota, New York, the

UK and the Netherlands all produce less than would be expected. These geographies

clarify that our patent-paper matches are generally capturing medical patents written

in regions which are traditional biotech and pharma hotbeds.

15Note also that the di�erences in locations that do lots of academic biomedical research and lots
of invention using that research further motivates focusing on article-to-patent transfers of knowledge.
It is not the case that locations which are good in one are necessarily strong in the other.
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3.2.2 The NIH Mandate

The NIH mandate requires funded research to be placed in an open access repository

within one year of publication. It binds on all research �rst published after April 7, 2008.

Of the 43 academic journals in our sample, 13 make more than 80% of their articles

across the sample freely available as of 2013. In most cases, they are making nearly

100% freely available, so the NIH mandate caused no de facto change in accessibility.

The other 30 journals in our sample �gate� their archives in the absence of an

open access mandate. Among articles published in those 30 journals, Figure 1 and

Online Appendix Figure A3 show that the NIH-funded articles became 55 percentage

points more likely to be freely available following the mandate, depending on the precise

de�nition of �open access�. Non-funded articles in those journals, on the other hand,

became only 5 percentage points more likely to be freely available. For this reason, we

refer to these 30 journals as being �a�ected� by the NIH mandate, and the other 13

journals as being �una�ected�.16

Mandate compliance is less than perfect on both sides of the April 2008 boundary.

In general, and especially at journals that do not make articles freely available unless

required by an institutional mandate, authors are themselves responsible for uploading

their research to PubMed Central. Less than perfect compliance after 2008, when

only about 80 percent of NIH-funded research in a�ected journals is freely available,

is driven by authors being unaware of the mandate, believing the mandate does not

apply to them, simple forgetfulness, or attempts to avoid open access due to the fact

that some journals charge fees on the order of $2000 to $5000 per article to permit

free availability for readers.17 Beginning in early 2013, the NIH began toughening

16Recall that funders other than the NIH also implemented open access policies during this period,
so some small increase is to be expected.

17In general, funders permit grants to be used to pay these fees, but nonetheless the fees require
diverting funds that could be used for other lab expenses.
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enforcement, threatening delays on future grants for authors who don't make their

previously-funded articles available. This policy caused a jump in free availability for

articles published after 2013, but the policy was predicated on the stagnant and less-

than-perfect mandate compliance for articles published between 2008 to 2012. That

is, the nature by which the NIH enforced its mandate between 2008 and 2012, our

�post-treatment period�, was roughly constant (see, e.g., van Noorden [2013]).18

In the year before the mandate began, Figures 1 and A3 show that there was

already a slow increase in the probability an NIH-funded article was freely available

online. This re�ects both that there was a voluntary, relatively unsuccessful, attempt to

encourage NIH authors to make work freely available before April 2008, and that some

authors may have assumed that the NIH mandate, stating that work published after

that date must be made freely available within one year, referred to all research that

had been published within a year of the mandate start date. This fuzzy compliance will

be immaterial given our empirical strategies, which will require only that the mandate

made a certain set of publications more likely to be freely available online, as Figures

1 and A3 make clear was the case. We will never use actual article-level availability or

non-availability in these estimates.

3.3 Estimation Technique and Statistical Inference

Online Appendix Table A1 and Figure A4 show that open access articles are much more

likely to be cited both by patents and other academic articles even after controlling for

the journal, publication date, funder, and author country. This e�ect should not be

interpreted causally, however. The causal e�ect may be overstated if articles subject to

an open access mandate, such as those written at prominent institutions which support

18Also note that websites like Sci-Hub, which permit non-subscribers to access gated research illicitly,
did not exist during the time period of our study.
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OA, are inherently more likely to be cited, if journals made their archives open access

under editorial leadership that was more generally concerned with applied science, or

if journals selectively made high-pro�le results open access. Broadly speaking, it is

di�cult to assign causality without knowing why some articles were freely available

and others were not.

A perfectly designed open access experiment goes beyond simply randomizing the

free availability of articles. Open access will naturally only a�ect behavior if inventors

we intend to treat actually know of and can �nd the article. Since potential users always

have the option of buying access to an article, either individually or via a subscription,

mandated open access is equivalent to a reduction in search cost, and the reduction in

search cost is consequential only if there are many free-to-read articles in a centralized

and easy to search location.19 Therefore, an optimal experiment would construct a

large database of scienti�c research, some of which is free to read and some available

only at a cost, with random assignment to the two groups.

The NIH mandate, which a�ected 37 percent of articles published in top journals

and led to deposit of these articles in the widely known Pubmed database, did not

lead to assignment at random. Controlling for journal and time of publication, NIH

funded articles before the mandate even began are 26 to 28 percent more likely to be

cited by a patent, re�ecting both the more US-heavy authorship and potentially the

higher quality of the research (Online Appendix Table A2). That the NIH mandate

a�ects only research published after April 2008, however, allows that time cuto� to help

causally identify the e�ect of open access. As noted, compliance with the mandate was

imperfect: in the 30 journals which gate nearly all of their articles in the absence of a

mandate, NIH funding increases the probability a given article is freely available after

April 2008 by around 50 percent, as was seen in Figures 1 and A3. Therefore, if the

19That results not only see their monetary cost fall, but can be found at that lower cost, was implicit
in our search model in Section 2.
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e�ect of treatment is linear in the probability of being made free to read, the true e�ect

of the NIH policy may be as much as twice the treatment e�ects we report. We discuss

noncompliance and its e�ect on our results further in Section 4.

We will estimate

yi = f(PostApril08×NIH,PostApril08, NIH,Xi) (1)

where yi is a measure of article-level citations such as academic citations, total patent

citations, the probability of at least one patent citation, or citations within a given time

period following article publication, and Xi are article-level covariates such as publi-

cation time, journal, and �rst author location. Identi�cation with the NIH mandate

ensures that bene�ts ascribed to open access do not re�ect selection into open access on

the basis of journal policies (a journal that switches to open access may have a better

editorial board, or a more applied focus) or home institution rules (elite universities

may be more likely to require open access from their faculty).

This identi�cation strategy requires that the use of NIH-funded research by in-

dustry did not di�erentially change in 2008 for reasons unrelated to open access. For

instance, if the NIH itself was becoming relatively more likely to fund applied research

around the same time as they began their open access mandate, we would be wrongfully

con�ating open access with this general applied reorientation.20 We use two methods

to account for this.

First, we estimate a placebo of Equation 1 using only the 13 journals in our

sample which make nearly all articles free to read, whether NIH funded or not. If

there is a general increase in the relative use of NIH-cited medical research compared

to other research, then even NIH-funded articles in these 13 placebo journals should see

20We do not know of any NIH policy along these lines in 2008, but there was a general push toward
applied impact within the NIH in the mid-2000s. See http://ncats.nih.gov.
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a citation bump after April 2008 compared to unfunded articles. The placebo is also

useful for investigating substitution. If the NIH mandate causes industry researchers to

simply substitute easily found references to, say, a basic scienti�c fact, then the value of

the increased citations caused by open access would be small. If, however, articles under

open access see more citations while those with no change in access see no decrease in

citations, then additional citations are more likely to represent real knowledge �ows

than citations of convenience.

Second, we formally estimate the triple di�erence

yi = f(PostApril08×NIH ×Affected,Xi) (2)

where Xi includes the covariates from Equation 1 as well as full saturation of the

elements of the triple di�erence. That is, we investigate the relative change in i) citations

to NIH-funded articles published after the mandate in journals which do not make

everything free-to-read, compared to ii) citations for funded articles published after the

mandate in una�ected journals.

A brief statistical caveat: in both estimates we are interested in the percentage

increase in citation propensity (or total citations) conditional on open access status.

In terms of statistical inference, then, we are investigating multiplicative treatment

e�ects.21 The reason for this is the parallel trends assumption underlying identi�cation

with a di�erence-in-di�erence approach. Our prior is that, if there were no open access

mandate, NIH-funded articles would be more likely to be cited by a multiplicative rather

than an additive factor compared to non-funded articles. That is, if 10% of unfunded

21Of course, the assumption must either be that open access generates a multiplicative increase in
total cites or propensity to cite at least once. Truncation of cites at 1 and the fact that total cites is
higher in the pre- than the post-period implies that if the multiplicative treatment assumption is true
for total cites - for instance, if cites arrive according a possibly zero-in�ated Poisson process at rate
C for non-NIH and λC for NIH articles - then an estimated treatment e�ect of the NIH policy using
truncated cites will underestimate the true e�ect. We return to this point in the conclusion.
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articles and 20% of funded articles published in 2005 are cited by a patent, then we

would not expect relative citation for articles published in a counterfactual 2012 without

a mandate to be 2% and 12%. Rather, we would expect that if 2% of unfunded 2012

articles have been cited, then something like 4% of funded articles should have been

cited.

If the outcome of interest is always positive, many researchers just log variables

to convert multiplicative parallel trends to additive parallel trends, then use standard

di�-in-di� techniques. In the cases like ours where the outcome variable is equal to

zero for the majority of entries, log linearization is not possible. The problems with log

linearization and the solution even in the case with many zeroes is well-studied in the

international trade literature (e.g., Santos-Silva and Tenreyro [2006], Ciani and Fisher

[2014]). Generically, with non-smooth dependent variables like a �was there a citation

or not?� binary, point identi�cation of treatment e�ects with nonlinear versions of the

parallel trends assumption is impossible (Athey and Imbens [2006]). However, imposing

somewhat stronger assumptions on the nature of the link function, coe�cients of the

nonlinear model can be estimated using poisson pseudo-maximum likelihood (ppml).

Standard errors are asymptotically correct even with overdispersion (e.g., Santos-Silva

and Tenreyro [2010], Santos-Silva and Tenreyro [2011], Hilbe [2007]).22 We will use

this model even when the dependent variable is a binary for comparability of results,

and because the coe�cients of logistic models are widely-misunderstood odds ratios

rather than percentage increases (e.g., Zou [2004]). In Online Appendix 2, we show

that alternative forms of estimating a multiplicative treatment e�ect are misleading.

In particular, we show that the commonly-used ln(n + 1) transformation, when used

on binary or zero-in�ated data, not only does not measure a multiplicative treatment

e�ect, but rather estimates ln(2) times the OLS di�-in-di� treatment e�ect under the

22This estimation technique is much more common in the trade literature than in management,
although it is not entirely unknown in the latter �eld; see, e.g., Agrawal et al. [2014].
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assumption of additive parallel trends.

4 Results

Figure 2 displays the ratio of citations received by NIH funded compared to non-funded

articles in the thirty journals a�ected by the 2008 NIH policy. This ratio, whether

measured using total citations or the less skewed probability of at least one citation, is

roughly constant before the NIH policy was implemented, albeit with nontrivial month-

to-month variation. Following the mandate, the ratio slowly and continuously rises.23

Table 3 presents our primary estimates. Controlling for journal and publication

month, moving from zero to complete open access would increase patent citations of

academic research by 25.3%, increase the probability of at least one patent citation

by 21.3%, and increase the the probability of at least one patent citation within 3

years of publication by 12.3%. Online Appendix Tables A3 and A4 show robustness

of these estimates to alternative methods of controlling for the decay in citations over

time, to additional covariates like the home country or state of the article author, and

to restricting the di�-in-di� kernel to articles published within 24 months of the NIH

mandate implementation. Online Appendix Figure A5 shows that our result is not

being driven by articles in a single, or a small number, of journals.

Con�rming prior research like McCabe and Snyder [2014], we �nd a precisely

estimated zero increase in academic citations due to the NIH open access policy; this is

not surprising given that biomedical academics tend to have both institutional access

to journals and competent research assistants to help search the literature. The bottom

panel of Figure 3 shows the null result within academia graphically.

23The increasing variance, rather than increasing trend, over time in this ratio is a result of lower
propensity to be cited by patents for both funded and unfunded articles later in the sample. Recall
again that patent applications are kept secret for a period, usually 18 months but often longer, hence
the number of cites we observe as we become closer to the present is falling.
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As discussed in the previous section, a general reorientation of NIH funding toward

more applied projects around 2008, among similar concerns, may have generated our

primary results even if open access actually did not a�ect patent citations. In order to

rule this out, Table 4 and the top panel of Figure 3 investigate the change in citations

to NIH-funded articles relative to non-funded articles within the 13 journals that make

the vast majority of their back catalog freely available. For instance, the New England

Journal of Medicine has made all research articles free-to-read online six months after

publication since 2001 (Campion et al. [2001]). If the NIH was funding more applied

projects after 2008, then a positive treatment e�ect of �open access� should be evident

even in journals like the New England Journal of Medicine.

The top panel of Figure 3 shows that, in fact, there was no such increase in the

citation advantage for NIH-funded work after 2008 in the journals una�ected by the

mandate. The formal ppml estimates in Table 4 show precisely estimated null e�ects

of open access in these placebo journals. Table 5 estimates a multiplicative triple

di�erence of the relative increase in citations for NIH-funded articles published after

April 2008 in journals that are expected to be a�ected by the mandate compared to

NIH-funded articles published after April 2008 in una�ected journals. The triple-di�

estimates accord nearly exactly with the estimates in our primary regression, �nding a

26.5 percent increase in total patent citations, and a 14 to 20 percent in the probability

of at least one citation. Again, citations within academia are relatively una�ected by

the mandate.

Figure 4 summarizes our main results graphically.24 Each panel shows the rela-

tive citation advantage for NIH-funded articles published in a given half year period,

normalized to the citation advantage of NIH-funded articles in 2005. The top left panel

shows that the patent citation advantage of NIH-funded articles is constant until 2008,

24A table with the estimates used in Figure 4 can be found in Online Appendix Table A5.
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and that the advantage is positive in every half-year period after the �rst half of 2009.25

On the other hand, the bottom left panel and two right panels show that there is nei-

ther an abrupt change nor a trend in the relative academic citation advantage or in the

patent citation advantage for articles published in una�ected journals.

Table 6 and Online Appendix Figure A7 estimate our main results using only

granted patents, in order to compare the treatment e�ect on front page citations (which

only appear in grants and not applications) to in-text citations. While the e�ect of the

NIH policy on in-text citations to granted patents is similar to our main results, the

e�ect on front page citations is statistically indistinguishable from zero. The point

estimate is that the NIH policy led to 4% higher probability of an article being cited on

the front page, and 9% fewer total cites, though the latter measure is particularly noisy.

This result is consistent with our discussion of the origin of in-text versus front page

cites. Front page citations have a legal rationale, and only must be disclosed when the

applicant is aware of the potential for the reference to relate to their patent claims. A

lawyer would not have the incentive to actively search literature for potential references

of this type. We return to this distinction when discussing limitations of our results in

Section 4.

Table 7 and Online Appendix Tables A7 and A8 investigate the e�ect of open

access within various subgroups. Table 7 shows that the main treatment e�ect is not

being driven by low-value patents. The e�ect of open access is qualitatively similar to

our primary estimates even if we restrict to patents assigned upon application (Table

7, Column 1 and 2) and patents with at least one related application �led to a foreign

patent o�ce (Column 5). All three measures proxy for high-value patents.26 Patent

25Again, since Online Appendix Figure A1 shows that PubMed Central became more visible and
more frequently used between 2008 and 2012, we should expect the citation advantage of open access
articles to be growing over time, not constant throughout the post-mandate period.

26Patents assigned on application are correlated with patents assigned upon being granted in our
data.
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applicants in the same geographic region as the research they cite see the same e�ect

of open access as those from more distant regions; this is perhaps not surprising given

that spillovers are often highly localized, while our �regions� are at the level of a state or

country (Columns 3 and 4). Online Appendix Table A7 attempts to identify the type

of �rm, rather than the quality of patent, that is associated with increased patenting,

without consistent di�erences by assignee type. Online Appendix Table A8 suggests

that open access a�ects patents with few inventors more than those with many inven-

tors, although the di�erences are not themselves statistically signi�cant. That said,

even restricting to citations from patents with �ve or more inventors, there remains a

large, positive impact of open access on patent citations. This evidence, though lim-

ited, is again consistent with the idea that the additional cites from open access are not

merely coming from low-value patents.

Finally, Online Appendix Table A9 examines the e�ect of the NIH policy on patent

citations when we weight the patents by the number of forward citations they themselves

receive from further patents. Patents with forward citations are well-established as

being more valuable inventions. Just under 30 percent of all articles which are cited are

cited by a patent with a forward citation. These forward citations are highly skewed.

The combination of these facts means weighed patent citations will be relatively noisy

compared to our primary estimates. Nonetheless, the point estimates of the e�ect of

the NIH policy - 20.8% more weighted patent citations and a 14.0% increase in the

probability of being cited by at least one patent which is itself cited by future patents -

are quite similar to our primary estimates. However, restricting to articles with at least

one citation, the average weighted quality of citing patents conditional on total citing

patents is statistically no di�erent for treated articles. That is, the marginal knowledge

in patents caused by open access mandates does not appear to shift the quality of

the citing inventions. We note that this statement should be heavily caveated by the
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noisiness of these estimates.

4.1 Threats to Identi�cation and Interpretation

We have identi�ed the e�ect of open access mandates on the use of academic knowledge

in patents using two techniques, taking advantage of the large exogenous jump in the

propensity an NIH funded article is open access after mid-2008, and the fact that some

journals ought not be a�ected by this policy since they make their archives freely avail-

able no matter who funds the published research. The primary threats to identi�cation

and interpretation are threefold. First, the NIH may have changed other policies in

the late 2000s which a�ect the citation of research in patents, and which our triple

di�erence does not suitably control for. Second, the increase in patent citations may

simply re�ect low-value substitution, whereby a patent attorney or low-level employee

of a lab is tasked with �nding relevant scienti�c background for a patent and simply

cites what is easiest to �nd. Third, since inventors always had the option to purchase

journal subscriptions, or to purchase individual articles, the marginal value of induced

extra citations may be low compared to the average knowledge �ow overall in a patent.

We handle these concerns in turn.

The �rst threat, that of NIH programs other than open access occurring at the

same time, could most aptly be handled by taking advantage of the panel data nature

of citations. A natural way to investigate the impact of open access policies is to look

at articles which spent, for excludable reasons, more or less time as part of the PubMed

database, or to look at within-article di�erences in citation probability before and after

the article is added to the database. For example, in prior studies of open science more

generally, Furman and Stern [2011] have taken advantage of the random accession of

biomaterial into a centralized database, where biomaterial from some older studies and

some new studies was added simultaneously, and Williams [2013] used quasirandom
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variation in the amount of time individual parts of the human genome were restricted

by Celera's license.

Since the NIH mandate relied on individual authors or their publishing journal

to actually upload articles bound by the mandate, there is some minor variation in the

exact delay between publication and free online availability. For instance, some articles

were added after only 10 months, while others were not free online until 14 months

after publication. In principle, then, we could investigate the month-by-month hazard

rate of patent citation for articles that either are or are not yet open access, or could

investigate whether longer delays attenuate our estimate of the e�ects of open access.

The problem is both that this variation is so minor, particularly given the fact that very

few citations come within a year of article publication, and that the underlying source

of variation is likely to be connected to an article's propensity to be cited for other

reasons. For instance, large labs, or authors who are very proud of a particular piece,

may be less likely to absentmindedly submit their article to PMC later than required

by the mandate.

Since a panel setup is infeasible, one might be concerned that our estimates,

particularly our di�-in-di�, may simply be picking up other policies that a�ect NIH-

funded research in the late 2000s. Although our placebo and triple di�erence should

help mitigate this concern - recall that NIH funded research in journals whose open

access status is una�ected by the mandate do not appear to gain any patent citation

advantage - it would potentially be useful to take advantage of mandates other than

the NIH rule which occur at times other than 2008. There are two reasons we do not

try to take advantage of these mandates. First, all PubMed accessions of institutional

or funded research we are aware of, other than articles a�ected by the NIH policy, are

either very small in size or are very challenging to link to individual articles. The small

potential size of alternative mandates can be seen in Figures 1 and A2, where only 6%
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of non-NIH funded research even by 2012 in the thirty journal subset is freely available

online, with close to zero availability prior to 2008. This 6% represents the maximal

total number of articles bound by some mandate other than the NIH mandate. Second,

we want to estimate the e�ect of open access relative to the article's citation pattern if

it were gated. Therefore, we need a base rate of articles unlikely to be treated by any

mandate. Hence, even if we had a large sample of articles treated by non-NIH mandates,

we would only be able to estimate the di�erential e�ect of that mandate relative to what

is, following the 2008 NIH mandate, an ever-smaller sample of untreated articles.

4.2 Interpretation of Treatment E�ects

To interpret our empirical results, let us return to the model in Section 2. In particular,

we want to understand how the relatively minor impediment of paying to read research

could possibly generate meaningful economic distortions. As of March 2016, articles

in the Journal of Biotechnology cost $37.95 for nonsubscribers. If these articles were

free, would they be cited more by inventors? The empirical evidence suggests that they

indeed would be, and not just in low-value inventions. But why? Are these references

simply throwaway citations of no importance? Do these citations simply substitute for

other references, leading to no net increase in the use of academic work?

The model suggests that in the absence of open access, authors will only read

articles where the probability the article contains useful knowledge times the expected

value of the increased private pro�t generated by the invention due to that knowledge

exceeds the cost of the article. Consider a particular piece of knowledge that would

increase the expected pro�tability of the invention by $10,000. If there are 300 articles

that potentially contain that knowledge, and they cost $37.95 each, the inventor will

not bother to search the literature. This remains true even if the social value of the

invention, inclusive of consumer surplus and spillovers, is a multiple of that $10,000.
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That is, the model suggests that wholly rational inventors will skip reading scienti�c

literature even when the gains from doing so are quite large. A corollary is that the

knowledge incorporated as a result of open access can be valuable. Indeed, theory

suggests that these potential $10,000-or-more citations induced by open access can be

more valuable than the average contribution of knowledge cited in by patents in the

absence of open access.

Are these numbers reasonable? Placing a precise dollar �gure which translates the

treatment e�ects into a social loss demands far too heroic an interpretation of the model.

That said, �ve features are important for bringing the model to data qualitatively.

First, we must have an empirical analogue for the �piece of knowledge� our theoretical

researcher was trying to �nd. Second, we need to know the value an additional piece

of knowledge has in expectation for researchers with institutional access and those

without. Third, we must estimate the di�culty of locating useful knowledge; that is

to say, how many journals will you need to read before �nding something worthwhile.

Fourth, we need the e�ective cost of accessing an article if you don't have an institutional

subscription. Fifth, we need the di�erence between the private value of an invention

and its social value.

On the �rst measure, we argue that in-text citations �t the model quite well.

As we have noted, the nature of in-text citations means that they will generally be

added by the inventor themselves. They can incorporate a broad range of valuable

knowledge inputs, including background facts, tools, techniques, motivations, and so on.

Examining which journals are cited most frequently by patents, the highest per-article

citation average is for articles in Nature Immunology and Cell Stem Cell. Articles in

both of these journals are cited much more heavily than articles in �prominent� journals

with high impact factors like JAMA or the New England Journal of Medicine. The

fact that journals with a more applied orientation are cited more heavily is empirical
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evidence, in addition the legal theory already discussed, supporting the validity of in-

text citations as a real knowledge �ow. Table 4 also shows that as open access increased

citation to a�ected journals, it did not change citation in una�ected journals. This is

consistent both with the search model and with the notion that in-text citations do not

just represent ceremonial references.

On the relative value of knowledge �ow for inventors without institutional access

versus those with access, it will naturally depend on what industry is being examined.

However, in biomedical research, small �rms perform a great deal of early stage work

where intellectual rather than regulatory or manpower bottlenecks are most severe.

Nonetheless, small biomedical �rms rarely have their own institutional subscription,

which suggests that the value of academic knowledge they might obtain is not so high

as to make the subscription model worthwhile. Proposition 1 shows that it is pre-

cisely these inventors - too small to make subscriptions worthwhile, yet still requiring

knowledge neither too important nor trivial - who bene�t the most from open access.

The extent of search required to �nd useful knowledge and the cost of accessing

research without a subscription again will depend on the industry. On these points, we

return to Lyman [2011], the correspondent to Nature Biotechnology we met earlier:

The number of published biological science journals has been expanding

for decades, driven by both scienti�c societies and for-pro�t publishers like

Nature Publishing Group (NPG). Some of these journals have grown and

divided like the bacteria that they often report on. NPG, for example, pub-

lishes not just Nature but also Nature Biotechnology, Nature Cell Biology,

Nature Chemical Biology, Nature Genetics, Nature Immunology, Nature

Medicine and Nature Neuroscience, to name a few, and a wide spectrum of

Nature Review journals.

That is, the number of good journals, especially in biology, has expanded rapidly,
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and the number of �elds that must be covered by a biomedical researcher searching

for useful knowledge has grown as well. The increasing burden of knowledge to reach

the frontier means that surface-level investigations of neighboring �elds have become

tougher. On the size of spillovers, the fact that there is any increase in citation behavior

at all due to open access means that, taking the model seriously, word-of-mouth is an

insu�cient substitute for scienti�c journals.

Two �nal caveats should be kept in mind. First, our sample is medical and biotech

invention. Inventors in this class are particularly likely to have technical backgrounds,

and to be familiar with reading academic research. It is not clear that the magnitudes we

�nd here would translate to industries where inventors are less connected to academia.

Second, we do not have direct evidence that the open access policy led to more or better

invention. It is a longstanding problem in the economics of innovation to measure true

knowledge �ows, and an even harder problem to measure the relative contribution of

particular pieces of knowledge in an invention to its social value.

5 Discussion and Conclusion

Institutional open access mandates have become increasingly common even though

they appear to have only minor e�ects within academia. Academics, especially at top

universities, have institutional access to published research. In the past few years,

the US, UK and EU have all considered legislation which would either greatly expand

mandated open access requirements, or greatly roll back existing mandates.

We show that open access causes patents to cite academic knowledge much more

frequently. We measure citations with the novel tool of extracted in-text citations,

which ought be more closely linked to the knowledge of the inventor themselves than the

commonly-used front page patent citation. A theoretical model of search by inventors
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suggests that these citations can represent real, valuable knowledge �ows even when

the cost of a journal article is relatively low. Inventors do not consume enough research

because it is arti�cially costly. The proximate source of this cost is academic norms

around publishing in high-prestige journals. Given the importance of access to research,

what can be done? We can consider this question at four di�erent constituent levels:

managers of funders, universities, �rms, and journals.

For �rms, the main takeaway is that limited access to research is consequential

for the quality of the �rm's innovations. Referring the inventors to colleagues or friends

with subscriptions does not constitute an e�ective solution, especially when the inventor

needs to keep up to date with an ever-growing literature base. As a more comprehensive

solution, the natural responses for any �rm whose input supplier is generating ine�-

ciency in the value chain by pricing above marginal cost is to internalize the externality.

The di�culty here is that the market power of scienti�c journals derives not from some

economic consideration, but from a non-market norm within academia about the types

of venues where serious research needs to be published. Even if a consortium of small

biotech �rms started an academic journal which was free to readers, what academic

would submit there instead of Lancet or JAMA or Cell? That is, academic norms

create barriers to internalization.

An alternative for the �rm managers is to pressure academics to shift toward more

open publishing. This is unlikely with only pressure from industry. Martin Frank, the

executive direction of the American Physiological Association, considered this in an

essay in the New England Journal of Medicine. His verdict? �At a time of limited

resources, should we be diverting funds from research in order to fund open-access

publishing? Personally, I think not� (Frank [2013]). That is, though there are clear

e�ciency harms from the current structure of academic publishing, the distribution of

winners and losers favors precisely the academic societies who would need to be pres-

40



sured to change norms. Therefore, a coordinated e�ort between various distributional

losers, including industry, leading academics, and funders, may prove more fruitful than

pressuring publishers and scholarly societies alone. A number of recent cases have seen

editorial boards at pro�t-maximizing journals defect to open access journals, taking

their personal prestige to the less distortionary new title.27

A third option for �rms, directly suggested by the model, is to work with comple-

mentors who lower the cost of �guring out which journal articles contain useful informa-

tion before purchasing the article. Automated or assisted literature search companies

are now widespread. Proposition 1 showed that the harm of open access was strictly

increasing in the coarseness of the partition of potential articles that might contain the

information a �rm needs. The higher the cost of articles and the coarser the information

spread, the more valuable automated curation and literature search tools become.

A �nal option, and one that has become much more common since the timeframe

of the data in this paper, is theft. Pirate websites like Sci-Hub and LibGen, with illicit

pdfs serving as scienti�c samizdat, have become mainstream very quickly. Essentially

any article in any journal can be read simply by copying the article URL into scien-

ti�c piracy sites. The existence of scienti�c piracy may be welfare-improving, since in

addition to pure transfers of surplus from publishers to readers, it reduces deadweight

loss.28 The deadweight loss in question is the economic bene�t from innovation that is

improved with knowledge found while searching the academic literature. The empirical

e�ects of the 2008 NIH mandate suggest these deadweight losses are not trivial. For

this reason, even if the academic norms that give publishers market power continue, we

may see that market power decline, and hence legally accessible research become easier

to obtain, because of competitive pressure from piracy.

27Lingua in 2015 and the Journal of Algebraic Combinatorics in 2017 are prominent examples.
28That is, these services will play an analogous role to �le sharing in the music industry. See

Waldfogel [2012].
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Piracy may make it more di�cult to sustain the status quo system of journal

�nancing. As was seen in the music industry, using price discrimination to protect

legacy income streams can increase the demand for piracy, and eventually harm core

revenue. Hence, out of concern for the dynamic interaction of journal pricing and piracy

demand, publishers may wish to shift pricing toward one that is more accessible for non-

academics like research-intensive �rms. It is also possible to accomplish this through

a coordination e�ort hinted at above. One example is the Sponsoring Consortium for

Open Access Publishing in Particle Physics (SCOAP3), which is a partnership of over

three thousand libraries, funding agencies and research centers in 44 countries and 3

intergovernmental organizations. Member countries contribute funding commensurate

with their publications, and SCOAP3 distributes this funding to publishers for costs

involved in providing Open Access. Publishers, then, convert key journals in the �eld

of High-Energy Physics to Open Access at no cost for authors, and reduce subscription

fees for all customers, which enables contributions to SCOAP3. Such an innovative

pricing mechanism would not have been possible without the buy-in of the publishers.

At the policymaker, or funder, level, decisions about open access need to account

for its e�ects outside academia in addition to within. The high price of individual aca-

demic articles required to maintain incentives for institutions to purchase subscriptions

is disproportionately damaging to inventors who would otherwise build sequentially on

the existing base of scienti�c results. Therefore, if the objective of the funder is creat-

ing a public good and ensuring its seamless dissemination, then taking steps to limit

externalities created by the market power of journals is paramount. Mandating open

availability of publications resulting from funded research, as in the NIH rule, is one

method. Creating or supporting alternative dissemination mechanisms that are in line

with the incentives of academics, such as creating a new journal with the coordination

of leading faculty is yet another method.

42



References

Ajay Agrawal, Carlos Rosell, and Timothy S. Simcoe. Do tax credits a�ect r&d ex-

penditures by small �rms? evidence from canada. NBER Working Paper 20615,

2014.

Mohammad Ahmadpoor and Benjamin F. Jones. The dual frontier: Patented invention

and prior scienti�c advance. Science, 2017.

Juan Alcacer, Michelle Gittelman, and Bhaven Sampat. Applicant and examiner ci-

tations in u.s. patents: An overview and analysis. Research Policy, 38(2), March

2009.

Susan Athey and Guido W. Imbens. Identi�cation and indi�erence in nonlinear

di�erence-in-di�erence models. Econometrica, 74(2), 2006.

Pierre Azoulay, Joshua Gra� Zivin, Danielle Li, and Bhavan Sampet. Public r&d

investment and private sector patenting: Evidence from nih funding rules. NBER

Working Paper 20889, 2015.

Yannis Bakos and Erik Brynjolfsson. Bundling information goods: Pricing, pro�ts, and

e�ciency. Management Science, 1999.

Elizabeth Popp Berman. Why did universities start patenting?: Institution-building

and the road to the bayh-dole act. Social Studies of Science, 2008.

Bo-Christer Björk, Annikki Roos, and Mari Lauri. Scienti�c journal publishing: yearly

volume and open access availability. Information Research, 2009.

J. Blumenthal and G. Freiburger. MLA/AAHSL Sequestration Letter. Unpublished,

2012.

43



Kevin A. Bryan. Sequential search on a partition. Working Paper, 2020.

Kevin A. Bryan, Yasin Ozcan, and Bhaven Sampat. A user's guide to in-text citations.

Research Policy, 2020.

Edward W. Campion, Kent R. Anderson, and Je�rey M. Drazen. A new web site and

a new policy. New England Journal of Medicine, 344:1710�1711, 2001.

Emmanuel Ciani and Paul Fisher. Dif-in-Dif Estimates of Multiplicative Treatment

E�ects. ISER Working Paper, 2014.

Wesley M. Cohen, Richard R. Nelson, and John P. Walsh. Links and impacts: The

in�uence of public research on industrial r&d. Management Science, 2002.

C.A. Cotropia, M. Lemley, and B. Sampat. Do Applicant Patent Citations Matter?

Working Paper, 2013.

P. Davis, B. Lewenstein, D. Simon, J. Booth, and M. Connolly. Open access publishing,

article downloads, and citations: randomised controlled trial. British Medical Journal,

2008.

Jeremiah Dittmar. The welfare impact of a new good: The printed book. Working

Paper, 2020.

J. Evans and J. Reimer. Open Access and Global Participation in Science. Science,

2009.

Lee Fleming and Olav Sorenson. Science as a map in technological search. Strategic

Management Journal, 2004.

M. Frank. Open But Not Free - Publishing in the 21st Century. The New England

Journal of Medicine, 2013.

44



J. Furman and S. Stern. Climbing Atop the Shoulders of Giants: The Impact of

Institutions on Cumulative Research. AER, 2011.

Y Gargouri, C. Hajjem, V. Lariviere, L. Carr, Y. Gingras, T. Brody, and S. Harnad.

Self-selected or Mandated, Open Access Increases Citation Impact for Higher Quality

Research. PLoS ONE, 2010.

Patrick Gaule and Nicolas Maystre. Getting cited: Does open access help? Research

Policy, 2011.

David J. Hardisty and David A. F. Haaga. Di�usion of Treatment Research: Does

Open Access Matter? Journal of Clinical Psychology, 2008.

S. Harnad, T. Brody, F. Vallieres, L. Carr, S. Hitchcock, Y. Gingras, C. Oppenheim,

H. Stamerjohanns, and E. R. Hilf. Green and Gold Roads to Open Access. Nature,

2004.

Joseph M. Hilbe. Negaitve Binomial Regression. Cambridge University Press, 2007.

John Houghton, Alma Swan, and Sheridan Brown. Access to Research

and Technical Information in Denmark. Working Paper, 2011. URL

http://www.fi.dk/publikationer/2011/adgang-til-forskningsresultaterog-teknisk-information-i-danmark.

Hans K. Hvide and Benjamin F. Jones. University innovation and the professor's priv-

ilege. Working Paper, 2017.

Alessandro Iaria, Carlo Schwarz, and Fabian Waldinger. Frontier knowledge and sci-

enti�c production: Evidence from the collapse of international science. Quarterly

Journal of Economics, 2018.

45



Adam B. Ja�e, Manuel Trajtenberg, and Rebecca Henderson. Geographic localiza-

tion of knowledge spillovers as evidenced by patent citations. Quarterly Journal of

Economics, 108(3), 1993.

Doh-Shin Jeon and Domenico Menicucci. Bundling electronic journals and competition

among publishers. Journal of the European Economic Association, 2006.

Doh-Shin Jeon and Jean-Charles Rochet. The Pricing of Academic Journals: A Two-

Sided Market Perspective. American Economic Journal: Microeconomics, 2010.

Madian Khabsa and C. Lee Giles. The number of scholarly documents on the public

web. PLOS One, 2014.

Heekyung Hellen Kim. The e�ect of free access on the di�usion of scholarly ideas.

Working Paper, 2012.

Stewart Lyman. Industry access to the literature. Nature Biotechnology, 2011.

Mark J. McCabe and Christopher M. Snyder. Identifying the E�ect of Open Access on

Citations Using a Panel of Science Journals. Economic Inquiry, 2014.

Martin Meyer. What is Special About Patent Citations? Di�erences Between Scienti�c

and Patent Citaitons. Scientometrics, 2000.

Joel Mokyr. The Gifts of Athena. Princeton University Press, 2002.

David Mowery and Bhaven Sampat. Essays in Honor of Edwin Mans�eld, chapter The

bayh-dole act of 1980 and university-industry technology transfer: A model for other

OECD governments?, pages 233�245. 2005.

F. Murray, P. Aghion, M. Dewatripont, J. Kolev, and S. Stern. Of Mice and Academics:

The Role of Openness in Science. NBER Working Paper 14819, 2012.

46



Fiona Murray and Scott Stern. Do formal intellectual property rights hinder the free

�ow of scienti�c knowledge? an empirical test of the anti-commons hypothesis. Jour-

nal of Economic Behavior & Organization, 2007.

Francis Narin. Patent bibliometrics. Scientometrics, 1994.

Jason Owen-Smith, Massimo Riccaboni, Fabio Mammolli, and Walter W. Powell. A

comparison of u.s. and european university-industry relations in the life sciences.

Management Science, 2002.

Patrick A. Puhani. The treatment e�ect, the cross di�erence, and the interaction term

in nonlinear 'di�erence-in-di�erences' models. Economics Letters, 115(1), 2008.

Michael Roach and Wesley M. Cohen. Lens or prism? patent citations as a measure of

knowledge �ows from public research. Management Science, 59(2), February 2013.

Bhavan Sampat and Heidi Williams. How Do Patents A�ect Follow-on Innovation?

Evidence from the Human Genome. Working Paper, 2014.

Bhaven Sampat. When do applicants search for prior art? Journal of Law and Eco-

nomics, 53(2), May 2010.

J.M.C. Santos-Silva and Silvana Tenreyro. The log of gravity. Review of Economics

and Statistics, 88(4), November 2006.

J.M.C. Santos-Silva and Silvana Tenreyro. Further simulation evidence on the perfor-

mance of the poisson pseudomaximum likelihood estimator. Economics Letters, 112

(2), 2011.

Joao M. C. Santos-Silva and Silvana Tenreyro. Currency Unions in Prospect and Ret-

rospect. Annual Review of Economics, 2010.

47



Donald E. Stokes. Pasteur's Quadrant. Brookings Institution Press, 1997.

P. Suber. Ensuring Open Access for Publicly Funded Research. British Medical Journal,

2012.

A. Swan. The Open Access Citation Advantage: Studies and Results to Date. Technical

Report, University of Southampton, 2010.

Robert J. W. Tijssen. Science dependence of technologies: evidence from inventions

and their inventors. Research Policy, 2002.

Richard van Noorden. Nih sees surge in open-access manuscripts. Nature News

Blog, 2013. http://blogs.nature.com/news/2013/07/nih-sees-surge-in-open-access-

manuscripts.html.

Joel Waldfogel. Innovation Policy and the Economy, Volume 12, chapter Music Piracy

and Its E�ects on Demand, Supply, and Welfare. University of Chicago Press, 2012.

M. Ware and M. Monkman. Access by UK Small and

Medium-sized Enterprises to Professional and Academic Infor-

mation. Publishers Research Consortium Report, 2009. URL

http://www.publishingresearch.net/documents/PeerReviewFullPRCReport-final.pdf.

H. Williams. Intellectual Property Rights and Innovation: Evidence from the Human

Genome. The Journal of Political Economy, 2013.

Guangyong Zou. A modi�ed poisson regression approach to prospective studies with

binary data. American Journal of Epidemiology, 159(7), 2004.

48



Figure 1: Sample consists of all medical research articles in the subset of 30 journals
that generally do not make research freely available unless forced to. �Open access�
refers to the article being freely available anywhere on the internet (the �Free full text�
category on PubMed) as of July 2013. The red (center) line represents the April 2008
NIH policy, and the pink (left and right) lines represent two months before and after
the o�cial beginning of the policy.
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Figure 2: Ratios of patent application citations for NIH funded articles versus non-
funded articles, by article publication month. The top panel gives the ratio of total
patent application citations. The bottom panel gives the ratio of propensities to have
at least one patent application citation. Articles restricted to the thirty journals which
generally do make articles freely available unless required by a mandate. The red
(center) line represents April 2008, and the pink (left and right) lines represent two
months before and after the o�cial beginning of the policy.
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Figure 3: Ratios of the propensity to be cited for NIH funded articles versus non-
funded articles, by article publication month. The top chart is a placebo estimate of
the previous �gure, restricting to the thirteen journals which make nearly all research
freely available and hence are una�ected by the mandate. The bottom �gure considers
academic citations before and after the mandate. The red (center) line represents April
2008, and the pink (left and right) lines represent two months before and after the
o�cial beginning of the policy.
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Figure 4: By half year, the estimated percentage di�erence in the ratio of the inde-
pendent variable for NIH versus non-NIH funded research, relative to the ratio in 2005,
where estimates are ppml controlling for journal and polynomial of publication month.
These percentages are not scaled by 2, and hence following the discussion in Section 3,
re�ect the estimated e�ect of the NIH mandate rather than the e�ect of going from zero
to complete open access. The top left panel is essentially the di�erence-in-di�erence of
Table 3 in event study form, the bottom left panel the placebo using the �una�ected�
thirteen journals which generally make all research freely available and hence are un-
a�ected by the mandate, and the right hand side panels show that academic citations
are generally una�ected by the open access mandate.

52



Table 1: Summary Statistics for Articles

All Articles

Observations 132,872
Mean # of Patent Citations .475
Mean # of Patent Citations to Year 2005 Papers 1.052
Minimum Number of Citations 0
Maximum Number of Citations 248
Pr(≥ 1 patent citation) .170
Available via PubMed Central .265
Available via Free Full Text .543
Funded by NIH .367
Mean # of Academic Cites 55.8
Pr(First author in United States) .474
Includes all research articles published between January 2005 and De-
cember 2012, matched to the universe of public US patent applications
from January 2005 to March 2015.
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Table 2: Summary Statistics for Patent Applications

Total patents in sample 2,898,005
Unique citing patents 28,136
Total Cites 63,106
Mean # of Patent Authors 3.65
Pr(patent is assigned) .623
Pr(assigned to a corporation) .333
Pr(assigned to a major biotech or pharma �rm) .059
Pr(assigned to a university) .284
Pr(assigned to an individual) .003
Pr(assigned to a government, excl. universities) .014
Pr(�rst inventor in United States) .648
Pr(inventors in multiple countries) .150
Pr(application submitted in >1 country) .825
Pr(patent granted by March 13, 2015) .314
Pr(patent granted by August 7, 2017) .487
Pr(�rst inventor in same country as �rst author of cited article) .491
Pr(�rst inventor in same region as �rst author of cited article) .180
�Major biotech or pharma �rm� includes 27 high-revenue �rms listed in the appendix.
Region means �same country if outside the US� or �same state if both inside the US�.
Probabilities all refer to the sample of patent applications which cite at least one medical
research article.
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Table 3: Di�erence in Di�erence estimates

Pat. Cites Pr(≥ 1 Pat. Cite) Pr(≥ 1 Pat. Cite in 3 yr) Acad. Cites

NIH × post 04/08 .2253** .1930*** .1160** -.0046
(.0845) (.0358) (.0454) (.0249)

(in % terms) 25.3 21.3 12.3 -0.4
NIH dummy .3075*** .2832*** .3557*** .2055***

(.0617) (.0236) (.0337) (.0197)
Observations 71337 71337 71337 70184
The unit of observation is the academic article, restricting to the thirty journals
which rarely make research free-to-read in the absence of a mandate. All estimates
are Poisson pseudo-maximum likelihood (errors are robust by construction), and all
include journal and publication month dummies. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table 4: Placebo Di�erence in Di�erence estimates

Pat. Cites Pr(≥ 1 Pat. Cite) Pr(≥ 1 Pat. Cite in 3 yr) Acad. Cites

NIH × post 04/08 -.0217 .0136 -.0186 -.0509*
(.0575) (.0318) (.0409) (.0270)

(in % terms) -2.1 1.4 -1.8 -5.0
NIH dummy .2026*** .2242*** .2480*** .1295***

(.0394) (.0183) (.0273) (.0198)
Observations 61408 61408 61408 60310
The unit of observation is the academic article, restricting to the thirteen journals
which make almost all research free-to-read, and hence which ought be una�ected by
the 2008 NIH mandate. All estimates are Poisson pseudo-maximum likelihood (errors
are robust by construction), and all include journal and publication month dummies.
�In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table 5: Triple Di�erence Estimates

Pat. Cites Pr(≥ 1 Pat. Cite) Pr(≥ 1 Pat. Cite in 3 yr) Acad. Cites

NIH×post 04/2008×A�ected .2354** .1780*** .1323** .0443
(.1016) (.0479) (.0611) (.0367)

(in % terms) 26.5 19.5 14.1 4.5
NIH dummy .1981*** .2229*** .2467*** .1290***

(.0395) (.0183) (.0272) (.0197)
Observations 132745 132745 132745 130494
The unit of observation is the academic article. All estimates are Poisson pseudo-
maximum likelihood (errors are robust by construction), and all include journal and
publication month dummies, and full saturation of post-April 2008 dummies, NIH
funding status, and a dummy indicating whether a journal is expected to be a�ected
by the open access mandate or whether it generally makes all or almost all archived
articles free-to-read. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table 6: E�ect is Much Stronger for In-Text Citations in Granted Patents

Front Page Cites ≥ 1 Front Page Citation In-Text Cites ≥ 1 In-Text Citess

NIH × post 04/08 -.0970 .0349 .1430*** .2091**
(.0983) (.0422) (.0512) (.0987)

(in % terms) 9.2 3.6 15.4 23.3
NIH dummy .4070*** .3058*** .3189*** .3603***

(.0678) (.0289) (.0328) (.0707)
Observations 71337 71337 71337 71337
The unit of observation is the academic article. Dependent variable is number of
citations or probability of at least one citation in a granted patent, using either front
page or in-text citations. All estimates are Poisson pseudo-maximum likelihood (errors
are robust by construction), and all include journal and publication month dummies,
and full saturation of post-April 2008 dummies and NIH funding status.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table 7: Di�erence in Di�erence Subgroup estimates

Assigned Unassigned Same Region Di�. Region Big Family

NIH×Post-04/08 .1952*** .1837*** .2213*** .1730*** .1697***
(.0429) (.0527) (.0770) (.0395) (.0404)

(in % terms) 21.6 20.2 24.8 18.9 18.5
NIH dummy .2966*** .3465*** .6200*** .2459*** .2682

(.0282) (.0334) (.0514) (.0258) (.0260)
Observations 71337 71337 71337 71337 71337
The dependent variable in all estimates is the probability of at least one cite
of the listed type. All estimates are Poisson pseudo-maximum likelihood with
Huber-White robust standard errors, and all include journal and publication
month dummies. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Online Appendix 1: Data Construction

Data Sources

Our data consists of a sample of 132,872 academic research articles published in 43
prominent medical and biotechnology journals between 2005 and 2012, and the uni-
verse of public patent applications from January 1, 2005 to March 13, 2015, a sample of
2,989,005 applications. We select all research articles, omitting notes, summaries and
editorials, from the following medical journals: The New England Journal of Medicine,
Lancet, The Journal of the American Medical Association, The Journal of Experimen-
tal Medicine, The Journal of Clinical Investigation, Neuron, Nature Medicine, Cir-
culation, The Journal of Clinical Oncology, Nature Immunology, Immunity, Blood,
Gastroenterology, The Journal of the American College of Cardiology, The Journal of
Neuroscience, Nature Neuroscience, Neuroimage, Cancer Cell, Oncogene, Hepatology,
Genome Research, Biological Psychiatry, Cancer Research, Journal of Neurochemistry,
Arthritis and Rheumatism, Lancet Neurology, Clinical Cancer Research, Clinical In-
fectious Diseases, Brain, Journal of Allergy and Clinical Immunology, Neurology, Cell
Stem Cell and Lancet Oncology. We also select all research articles from the follow-
ing biotechnology journals: Nature Biotechnology, Trends in Biotechnology, Applied
Microbiology and Biotechnology, Biotechnology and Bioengineering, Tissue Engineer-
ing, Journal of Biotechnology, Journal of Neural Engineering, Biotechnology Progress,
Biotechniques, and Transgenic Research. These journals were selected by searching for
high impact factor general interest biomedical, specialty biomedical, and biotechnology
journals.

The bibliographic data on academic research articles come from the PubMed
database, and include the full citation of each article (author(s), title, journal, page
numbers, country of �rst author address, year of publication). We observe the �rst
author country or U.S. state of origin in all but 2.26% of the articles. The data also
includes the date at which the full text of the article became public on the PubMed
database. For articles not on PubMed Central, we extract whether the article was
available via the �Free Full Text" link on June 30, 2013, where FFT denotes articles
freely available on the internet though not on the PubMed Central server. In 13 of
these journals, over 80% of their archives were freely available online as of mid-2013;
in the others, the vast majority of the back catalog was not free to read as of the same
date.29 We also extract the total number of academic citations as of June 2014 from
Thomson Reuters' Web of Science.

The data on patent applications come from the publicly available USPTO Patent
Application Publication Full Text �les. These �les include the full text of the patent
applications, as well as bibliographic information, including the application and publi-
cation dates, and the inventor names and locations.

29The exact 80% cuto� is unimportant.
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Matching Papers and Patents

The main challenge for our study is to identify the citations patent applications make
to research articles. Unlike granted patent data, the patent application �les do not have
a separate section listing patent and non-patent citations in a standard format as prior
art; instead, there are references within the application speci�cation, some of which
will later be considered prior art, and others of which will remain in the granted patent
but will never appear in the prior art list. As we discuss in the body of this article,
we believe the in-speci�cation references may more accurately track what management
researchers have in mind when they think of the �paper trail� of knowledge �ows, but
extracting these non-standardized references is a di�cult problem.

To identify whether an article is cited by a patent, one needs to search for parts of
the article information within the full text of the patent application. Given the 132,872
articles in our sample, just searching for the article �rst author name and article year
would result in more than a quarter of a million queries to 533 weekly xml �les, with
each �le having an average size of 0.5 GBs. Therefore, we have developed the following
algorithm to identify the matches within a reasonable timeframe.

1 - The patent applications are provided as xml �les. A single line in this xml
�le may contain an entire paragraph in the patent application text, hence a line may
contain thousands of characters. Investigating a subset of the �les, we have identi�ed
that there are very few lines longer than 7000 characters in length; therefore, we have
kept only the �rst 7000 characters of each line in the xml �le.

2 - Each line in the xml �le starts with an xml tag identifying the information in
that line. Through investigation of a subset of the �les, we have found that references
are nearly always included in the lines with tags �p� and �li�, which contain the body
paragraphs and list elements, respectively. Therefore we dropped the remainder of
the �les, and kept only lines with these tags. The remaining portions of the �les
also contain a minimal amount of citations, but investigation by hand suggests that
these are mostly repetitions of citations also made elsewhere within the same patent
application. In any case, we have no reason to believe that the citations from these lines
have any relationship to open access status of the paper, hence should not contaminate
our results.

3 - We then identify lines that contain any of the journal names in our list of
43 journals. For the purposes of this search, the journal list is augmented by various
common abbreviations of the same journal name. For example, to capture New Eng-
land Journal of Medicine, eight di�erent abbreviations were searched for, including the
following: �NEJM", �N.E.J.M", �N. Engl. J. Med", and �New England J. Medicine".
In total, to identify the 43 journals in our sample, we have searched for 186 di�erent
abbreviations of these journal names.

4 - We eliminate any lines not containing the four digits of at least one year from
2005 to 2012 within 200 characters of a journal name identi�ed in the previous step.

5 - We eliminate lines that do not contain the �rst author's last name within 150
characters of the journal title. In this step, we are only identifying the �rst citation
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to a single journal within a single line. In other words, if two di�erent articles from
the same journal are cited within a single line of the patent application, then we may
or may not capture the second one depending on how far apart it is located from the
�rst citation. We have no reason to believe that missing such citations would bias our
results.

6 - Among the matches identi�ed so far, we eliminate matches which include
neither the article page numbers nor the �rst four words of the article title within 150
characters of the journal title.

7 - Finally, we manually investigated a sample of citations to papers where author
last names appeared frequently in our dataset: Brown, Chan, Chang, Chen, Cheng,
Choi, Guo, Hu, Huang, Jiang, Johnson, Jones, Kim, Lee, Li, Lin, Liu, Lu, Ma, Park,
Singh, Smith, Song, Southgate, Sun, Tang, Wang, Williams, Wong, Wu, Xu, Yang, Yu,
Zhang, Zhao, Zheng, Zhou and Zhu.

This algorithm identi�ed 63,106 citations made from patent applications to aca-
demic articles in our sample, coming from 28,136 unique patents.

Any algorithm of this type needs to balance between Type I and Type II errors.
In this context, a Type I error is erroneously claiming the existence of a citation.
Investigation by hand suggests that the matches identi�ed by the algorithm contain
less than one percent Type I errors. A Type II error happens if the algorithm fails
to identify an existing citation. For instance, �In 1989 Stephan J. Weiss in the New
England Journal of Medicine conducted bacterial sensitivity studies on E. Coli and
toxicity on tissue in guinea-pigs� in patent application 12/101,775 is too vague, lacking
both an article title and a journal issue number, for our algorithm to match it with a
speci�c article. The extent of Type II errors of this kind is di�cult to quantify, but
we have no reason to believe that missing matches are correlated with the open access
status of articles, and hence they ought not bias our results. We investigated a number
of less restrictive algorithms, but generally they resulted in many more Type I errors
with very few additional legitimate matches.

We also check for self-citations, where patent applicant authors cite their own
academic article. Such cites are at most 1.5% of our sample and likely far less, where
1.5% represents cites from patentees with the same last name as a paper author in the
same country or state citing within 12 months of the paper publication date. Many of
these potential self-cites represent continued research by the same scientist, or coinci-
dences with common names. Such a low number of self-cites is to be expected since we
are investigating patent applications made after the paper publication date.

Note that we only observe publicly available patent applications. The modal
patent is kept secret for 18 months after its application is made, though a combination
of patent applicant requests, foreign patent o�ce rules, and rapid grant dates means
that there is a lot of heterogeneity in this delay. Since our patent data is through March
2015, this means that we only observe the modal patent applied for in months before
October 2013, and hence for mechnical reasons the closer an article date gets to the
present, the fewer patent citations we will observe. We have examined all of estimates
restricting to citations within three years of the article publication date, and aside from
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adding noise the estimates are nearly identical to our preferred estimates.

Identifying Assignee Type

It is not obvious how to assign patent applications as corporate, university, or otherwise.
Our technique was to manually examine our patent matches to generate a list of case-
and spacing-dependent strings common for university assignees (the word �university�
in many languages, the names of large research centers, etc.) and corporate assignees
(the assignee name used by common patentees, the words for �Inc.� or �LLC� in many
languages, etc.). This technique allowed us to sort over 98% of the assigned organiza-
tions (a single patent may have multiple assignees, and we attempt to sort each assignee
on each patent) into either a University/Research Center, Government, Corporation,
Other Hospital or Individual. The remaining 2% or so could be assigned by hand, but
we prefer for replicability reasons to use only automated assignation. Note that the
particular strings below are uniquely chosen for medical-related patents from 2005 to
2015, so this technique is not a broadly applicable automatic categorization process.

�University� was a designation given to patents with any of the following in
one of their patent assignee strings: �university�, �alumni�, � univ�, �national can-
cer�, �brigham�, �jackson lab�, �research center�, �akademie�, �vib �, �RIKEN�, �Eye &
Ear�, �medical school�, �national jewish health�, �eth zurich�, �Center for�, �univeristy�,
�higher education�, �cold spring harbor�, �akadamie�, �centre for�, �fundacio�, �Uni-
versité�, �centre�, �planck�, �universuty�, �Universitât�, �fundacion�, �UNIVERSITÀ�,
�agence nationale�, �insitute�, �UNIVERSITÉ�, �eye and ear in�rmary�, �Society for�,
�Unversity�, �cancer centre�, �universite�, �institue�, �istituto�, �cancer center�, �fonda-
tion�, �universiteit�, �universitet�, �universitaet�, �city of hope�, �educational fund�, �zen-
trum�, �consejo�, �ecole�, �universtiy�, �centro�, �kettering�, �mayo�, �schule�, �institucio�,
�centrum�, �hospital for sick�, �children's hospital�, �academisch�, �universita�, �univer-
sit�'at�, �unviersity�, �georgia tech�, �school of�, �consiglio nazionale�, �intellectual proper-
ties�, �fondazione�, �national centre�, �centro nacional�, �centre national�, �foundation�,
�regents�, �council�, �fred hutchinson�, �general hospital corporation�, �universidade�,
�research hospital�, �medical center�, �foundation�, �universitat�, �universidad�, �cole-
gio�, �univerisite�, �institut�, �institute�, �instituto�, �trustees�, �academia�, �academy�,
or �college�. These strings were picked following manual investigation in order to limit
type I and type II errors, and attempt to capture academic research hospitals as well
as universities themselves.

�Government� was a designation given to patents with any of the following in one
of their patent assignee strings, if that patent assignee string was not previously de-
noted �University�: �her majesty�, �as represented by�, �agency�, �department of�, �dept.
of�, �dept of�, � NIH�, �NHS �, � NHS�, �prefecture�, �global alliance�, �commonwealth
scienti�c�, �international aids�, �Commisariat�, or �Commissariat�.

�Corporation� was a designation given to patents with any of the following in one of
their patent assignee strings, if that patent assignee string was not previously assigned to
�University� or �Government�: � LLC�, � Inc�, � Gmbh�, � Ltd�, �Corporation�, � Corp�,
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�inc.�, �l'oreal�, �biomerieux�, �s.p.a�, �pharnext�, �nektar�, �janssen�, �gingko bioworks�,
�ooo �, � SL.�, �Galderma�, �Moderna �, �bio-rad�, � Co�, �B. V�, � LLC�, �d.o.o.�, � aps�,
�a.r.l.�, �n.v.�, �GlaxoSmithKline�, � Pharma�, �L.L.C.�, �merck�, �law group�, �pierre
fabre�, �gesellschaft�, � AB�, �B.V.�, � AG�, �wyeth�, �S.L.�, �S.A.�, �Ltd.�, �G.m.b.h.�, �
SE�, � Kaisha�, �z o.o.�, �s.l.u.�, �AstraZeneca�, �,LLC�, �BV�, � holdings�, �K.K.�, � KK�,
� SA�, � GmhH�, �,Inc�, � Spa�, � NV�, � N.V.�, �venture capital�, � Oy�, �,Ltd�, � ehf�,
� s.p.a.�, � srl�, � s.r.l.�, �Sano��, � AS�, � S.A.�, �A/S�, �Pharmaceuticals�, � Limited�,
�Laboratories�, or � plc�.

�Hospital� was a designation given to patents with any of the following in one
of their patent assignee strings, if that string was not previously assigned to �Uni-
versity�, �Government� or �Corporation�: �hospital�, �hopital�, �hopitaux�, �hospita�,
�HÔPITAUX�, �Red Cross�, �punainen risti�, or �health system�.

�Individual� was a designation given to patents with an individual assignee name.
We also denoted separately corporate-assigned patents that were assigned to one

of the 27 largest pharma or biotech �rms, by revenue. Thus, �Major biotech �rm� was
a designation given to patents assigned to Novo Nordisk, Baxter, Gilead, Biogen Idec,
Teva, Celgene, Merck, GlaxoSmithKline, CSL, Alexion, Regeneron, Squibb, Genzyme,
P�zer, Novartis, Sano�, AstraZeneca, Bayer, Eli Lilly, Wyeth, Ho�mann, La Roche,
Boehringer, Takeda, Amgen, Sankyo or Astellas, permitting common abbreviations in
patent applications by these �rms. Assignation to wholly owned subsidiaries with a
di�erent name would not be captured by this measure.

Identifying Granted Patents

Patent applications are linked to granted patents in two ways. First, the grant bulk data
was individually parsed. Second, Google Patents was scraped for the �also published
as� �eld on each patent application in our sample, then scraped to determine whether
that corresponds to a granted patent with the application number we started with. In
over 99.9% of our sample, these two methods give identical results; it appears clerical
errors explain the handful of discrepancies.
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Online Appendix 2: Alternative Identi�cation Models

In this appendix, we show our main e�ects of interest using a simple di�erence in means,
and note issues using a log-linear OLS model or probit/logit di�erence-in-di�erence
estimations. Since most articles are never cited by a patent, our data contains many
zeroes, hence log-linear OLS is estimated using ln(n+1) as the dependent variable. We
also discuss precisely what is being estimated in our main e�ect.

We discuss the following four facts. First, a simple di�erence in means closely
matches our ppml estimates in the main results. This is because the control variables -
journal code, publication date, etc. - are roughly symmetric in our data on either side
of the NIH mandate. Second, a log-linear OLS model estimates a treatment e�ect of the
NIH policy on citation behavior of the opposite sign that we �nd in our main results.
We prove that when estimating di�erence-in-di�erence on a binary outcome with a
multiplicative true treatment e�ect, the sign of the log-linear OLS will be identical to
the sign of a simple linear OLS model assuming an additive treatment e�ect. We show
why linear OLS gets the sign wrong in our context, and hence why log-linear OLS will
as well. To our knowledge, this issue with adding 1 to the dependent variable and
estimating di�-in-di� using a log-linear OLS has not been explicitly discussed in prior
literature.

Third, we show that logit and probit coe�cients on the NIH policy are qualita-
tively aligned with our ppml estimate, although the interpretation of this variable as a
treatment e�ect, and inference properties, are less well-established. Finally, we mention
that our primary treatment e�ect should be interpreted as the treatment e�ect on the
average, not the average treatment e�ect. Further, we note that the necessary iden-
ti�cation assumptions for the extensive margin and intensive margin treatment e�ect
estimates in the main results are not the same, but that the assumptions converge as
the extensive margin average becomes close to zero.

Raw Di�erence in Means

Without controlling for covariates, a naive average multiplicative treatment e�ect can
be computed under the assumption that NIH-funded articles are cited x times more
frequently than unfunded articles in the absence of an open access mandate, or alter-
natively that NIH-funded articles are x times more likely to be cited than unfunded
articles in the absence of a mandate. Under that assumption, open access increases
patent citations by

E(yFundedOAt)

E(yFundedNoOAt)
=

E(yFundedOAPost)

E(yUnfundedNoOAPost)
× E(yUnfundedNoOAPost)

E(yFundedNoOAPost)

=
E(yFundedOAPost)

E(yUnfundedNoOAPost)
× E(yUnfundedNoOAPre)

E(yFundedNoOAPre)

(3)
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where yabc represents citations to (probability of being cited by) articles of NIH-funding
status a that are bound by an OA mandate b in time period c, where Pre and Post
refer to articles published before or after the NIH mandate. The �nal equality holds
by the multiplicative parallel trends assumption. All four terms are observable in the
data, hence under the mulitplicative treatment parallel trends assumption, the average
treatment e�ect can be identi�ed.

In the data, the mean post-mandate citation propensity for funded articles bound
by the mandate E(yFundedOAPost) is 14.20% and the mean post-mandate citation propen-
sity for unfunded articles not bound by the mandate E(yUnfundedNoOAPost) is 7.36%. The
mean pre-mandate citation propensity for funded articles E(yFundedNoOAPre) is 27.28%
and the mean pre-mandate citation propensity for unfunded articlesE(yUnfundedNoOAPre)
is 17.79%. The overall treatment e�ect of open access on citation propensity is therefore
25.85%, very similar to the ppml treatment e�ect with covariates of 21.29% found in
Table 3 of the main results. Likewise, the four expectations using total patent citations
instead of citation propensity are, respectively, .3332, .1587, .9252, and .6124. The
estimated treatment e�ect is therefore 33.02%, again similar to the ppml estimate in
Table 3 of the main results of 25.26%. As in the main results, these are lower bounds,
since the NIH mandate only increased open access probability by roughly 50 percent.

Linear Models

Note that the baseline number of citations declines over time, so the post-treatment
number of citations under any open access rule will be lower than the pre-treatment
number under that same status. It is evident from Online Appendix Figure A4, by
examining pre-April 2008 averages, that an additive treatment e�ect assumption is
likely to be counterfactual: NIH funded articles published in the �rst year of our sample
recieve .55 more citations than non-funded articles, but by the �nal year of our sample,
the average article receives .065 citations. It would not be plausible - indeed, would be
mathematically impossible, for there to be a .55 additive gap in citation rates in that
period. Ignoring this issue and estimating a standard di�-in-di� with OLS generates a
negative treatment e�ect, as seen in Online Appendix Table A10.

To understand why, look at the conditional means calculated above. The absolute
pre-period di�erence in citation propensity for NIH-funded versus unfunded articles is
9.49 percentage points. Unfunded articles in the post-period have a citation propensity
of 7.36%. If we assumed additive parallel trends, we would expect funded articles
without open access to have a citation propensity of 7.36+9.49=16.85%. Since the
observed probability is 14.20%, OLS without covariates would estimate a treatment
e�ect of -2.65%, very close to the negative full model estimate in column 2 of A10.

Of course, one can in theory take logs and estimate multiplicative treatment e�ects
using OLS. Since the dependent variable using either total cites or the probability of
being cited at least once is equal to zero for most observations, this cannot be done
directly with our data. Taking logs of the number of cites plus one, or the citation
propensity plus one, does not properly estimate multiplicative treatment e�ects. Why?
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Consider a binary dependent variable. Taking logs of that variable plus 1, the dependent
variable is either ln(2) or ln(1) = 0. Hence E(ln(yabc)) for any funding status, time
period, and treatment status is equal to the probability yabc = 1 times ln(2). Therefore,
the log linear additive treatment e�ect will be estimated to be

[E(yFundedOAPost)−E(yUnfundedNoOAPost)]−[E(yFundedNoOAPre)−E(yUnfundedNoOAPre)]×ln(2)

which is exactly ln(2) times the linear OLS treatment e�ect, precisely what we observe
in columns 2 and 4 of Table A10.30 That is, with binary dependent variables, we �undo�
the log-linearization of the model by adding 1 to the dependent variables. Since the
counterfactual assumption of additive parallel trends in the standard OLS estimate led
to the wrong sign on the coe�cient, this wrong signed coe�cient will be retained in
the log linearized model. When the dependent variable is a zero-in�ated count variable
like total citations in columns 1 and 3 of Table A10, the link between OLS and the log
linearized model is not as tightly linked, but the same conceptual issue will occur.

Online Appendix Table A10 also estimates logistic and probit versions of our
primary model. While the coe�cient on the interaction terms are positive, is it known
in the literature both that this interaction term does not represent a treatment e�ect
(Puhani [2008]). Worse, even if that coe�cient represented a treatment e�ect under
some identifying assumption, the relevant assumption necessary to interpret the output
of a logistic or probit regression is not multiplicative parellel trends.

Finally, what precisely is ppml estimating? It is known that with heterogeneous
treatment e�ects, ppml is estimating the treatment e�ect on the average, not the average
treatment e�ect. More critically, we need to be careful about correctly specifying our
identifying assumption. Our two primary dependent variables of interest are total
citations and the probability of at least one citation (�cited once�). We may be interested
in both if we believe the skewed nature of total citations adds noise. Since cited once
truncates total citations, in general it cannot be the case that the multiplicative parallel
trend will hold for both outcome variables. However, as the citation rate gets su�ciently
small, the two assumptions become equivalent. In particular, assume that citations are
generated by a Poisson process, where gated articles receive a mean of p citations and
free-to-read articles receive a mean of λp. The probability of exactly one citation is
exp−p p and exp−λp λp. The multiplicative parallel trends assumption is that λp

p
= λ

is constant. In the limit as p goes to zero, exp−λp λp
exp−p p

→ λ. If the base probability p
is positive, then depending on whether the truncated citations or the total citations
have a constant multiplicative ratio for the treated and control groups, either the total
citation treatment e�ect is overstated, or the cited once treatment e�ect is understated.

30Because the OLS model includes covariates for time trends and journal of publication, the co-
variates need not be in precisely that proportion; in our case, however, those covariates are balanced
enough across groups that we, to three decimal places, do in fact have exactly the ln(2) relationship
between treatment e�ects in the linear and log-linear models.
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Online Appendix 3: Additional Tables/Robustness

This appendix contains the following auxiliary estimates and robustness checks.

Table A1: Open access articles are cited more often in the raw data

Table A2: NIH funded articles are more cited than unfunded articles in the pre-
period

Table A3: Primary estimates are robust to alternate time trends and including
additional covariates like location of article authors

Table A4: Primary estimates are robust to restricting to the 24 months before
and after April 2008

Table A5: Primary treatment e�ect can be seen in each half-year period, as in
Figure 4

Table A6: Subgroup estimates using placebo journals show consistent null e�ects

Table A7: Primary estimates splittling citations assigned to universities, corpo-
rations, and small corporations.

Table A8: Primary estimates splitting citations from small, medium, and large
numbers of co-inventors

Table A9: Primary estimates weighing citations by forward patent citations

Table A10: Primary estimates using OLS, log-linear OLS, logit, and probit

Table A11: The geography of medical researchers who publish in top journals,
and of inventors who cite this research, are not totally aligned

Figure A1: Monthly downloads from PubMed Central are increasing over time,
as the service becomes more well-known

Figure A2: NIH funding probability is constant over time during our sample period

Figure A3: Alternate de�nition of �open access� shows an even starker shift in
open access availability of NIH funded articles after April 2008, as compared to Figure 1

Figure A4: In the raw data, there is a large patent and academic citation gap
between open access and gated articles
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Figure A5: Investigating the e�ect of open access on a journal-by-journal basis,
our main estimates are not driven by a small number of journals

Figure A6: In-speci�cation citation properties like skewness look very similar to
the properties seen in prior art citations to academic literature

Figure A7: Front page citation propensities show only a small treatment e�ect
from open access, if anything
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Table A1: Open Access in the Raw Data

Patent Cites Pr(≥ 1 Pat. Cite) Pr(≥ 1 Pat. Cite) Academic Cites

Open Access .4337*** .2441*** .2140*** .2897***
(.0623) (.0218) (.0218) (.0153)

(in % terms) 54.3*** 27.6*** 23.9*** 33.6***
NIH dummy .2071*** .2445*** .1152*** .0947***

(.0285) (.0125) (.0162) (.0107)
Country Dummies? N N Y N
Observations 132,745 132,745 129,749 130,494
The unit of observation is the academic article. All estimates are Poisson pseudo-
maximum likelihood (errors are robust by construction), and all include journal and
article publication month dummies. �Open Access� is a dummy equal to one for
articles freely available via the PubMed FFT designation as of June 2013.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A2: NIH Funded Articles are More Cited in Pre-Period

Pr(≥ 1 Pat. Cite) Total Pat. Cites

NIH Dummy .2460*** .2337***
(.0147) (.0354)

(in % terms) 27.9 26.3
Observations 56,650 56,650
The unit of observation is the academic article, restricted to those
published before the NIH mandate begins. All estimates are
Poisson pseudo-maximum likelihood with Huber-White robust
standard errors, and all include journal and publication month
dummies.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A3: Primary Estimates with Alternate Time Trends and Covariates

[1] [2] [3] [4] [5] [6]

NIH×Post-04/08 .2147*** .2970*** .1932*** .1927*** .2597*** .2081***
(.0844) (.0898) (.0358) (.0380) (.0843) (.0359)

(in % terms) 23.9 34.6 21.3 21.3 29.7 23.1
NIH dummy .3173*** .2810*** .2834*** .2801*** -.0247 .1167***

(.0622) (.0640) (.0236) (.0241) (.0772) (.0276)
Pub Month Quadratic Y Y
Pub Month Quartic Y Y
Journal-Spec. Time Trend Y Y
Article Author Location Y Y
Observations 71337 71337 71337 71337 69223 69223
[1],[2],[5]: Total patent citations
[3],[4],[6]: Pr(≥1 patent citation)

The unit of observation is the academic article, and the sample restricts
to the 30 journal subset as in Table 5 in the main paper. All estimates
are Poisson pseudo-maximum likelihood with Huber-White robust standard
errors, and all include journal dummies and a publication month quadratic.
Location dummies are state and country �xed e�ects linked to the location of
the �rst author for the article in question. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A4: Primary Estimates Restricting to +/-24 Months from April 2008

Total Cites >1 Cite Total Cites >1 Cite

NIH×Post-04/08 .2098** .1560*** -.0413 .0129
(.1003) (.0450) (.0715) (.0397)

(in % terms) 23.3 16.9 -4.0 1.3
NIH dummy .3151*** .2980*** .1590*** .1970***

(.0694) (.0314) (.0483) (.0254)
A�ected Journals Y Y
Una�ected (Placebo) Journals Y Y
Observations 35887 35887 31830 31830
The unit of observation is the academic article. Estimates restricted to
sample of articles published between April 2006 and March 2010, or two years
before and after the NIH policy was implemented. All estimates are Poisson
pseudo-maximum likelihood with Huber-White robust standard errors, and
all include journal dummies and a publication month quadratic. �In % terms�
is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A5: Primary Estimates on a Half-year by Half-year Basis

>1 Cite, A�ec. >1 Cite, Una�ec. Acad., A�ec. Acad., Una�.

NIH×2006H1 1.048 1.036 1.006 .987
(.0695) (.0551) (.0638) (.0550)

NIH×2006H2 1.041 .910* 1.026 .948
(.0716) (.0509) (.0582) (.0582)

NIH×2007H1 .982 .963 .964 .864**
(.0665) (.0535) (.0530) (.0506)

NIH×2007H2 .995 1.030 1.000 .894**
(.0717) (.0607) (.0587) (.0509)

NIH×2008H1 1.153** 1.081 .9807 .879**
(..0832) (.0663) (.0553) (.0511)

NIH×2008H2 1.091 .907 1.023 .868**
(.0824) (.0587) (.0574) (.0609)

NIH×2009H1 1.132* 1.000 1.028 .875**
(.0867) (.0676) (.0595) (.0527)

NIH×2009H2 1.250*** 1.032 .970 .988
(.1038) (.0798) (.0520) (.0695)

NIH×2010H1 1.337*** 1.039 .988 .925
(.1233) (.0849) (.0632) (.0542)

NIH×2010H2 1.299*** 1.079 .953 .934
(.1238) (.1027) (.0524) (.0678)

NIH×2011H1 1.308** 1.039 .986 .803***
(.1379) (.1044) (.0548) (.0504)

NIH×2011H2 1.335** 1.117 1.010 .964
(.1701) (.1467) (.0576) (.0755)

NIH×2012H1 1.547*** .9543 .911 .917
(.2454) (.1499) (.0553) (.0610)

NIH×2012H2 1.599** 1.236 1.131* .964
(.3258) (.2564) (.0843) (.0624)

NIH dummy 1.303*** 1.253*** 1.230*** 1.199***
(.0493) (.0357) (.0426) (.0427)

Observations 71337 61408 70184 60310
IRR of NIH funding on patent cites (in terms of �probability of at least one cite
to a given article�) and academic cites, by Half-Year, for articles in journals
a�ected and una�ected by the 2008H1 NIH policy, as in Figure 4, where
coe�cients are relative to Year 2005 articles. The unit of observation is the
academic article. The dependent variable in all estimates is the probability of
at least one cite of the listed type. All estimates are robust ppml with journal
dummies and a publication month quadratic. Translation of treatment e�ects
into % terms is omitted for brevity.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A6: Di�erence in Di�erence Subgroup Estimates in Placebo Journals

[1] [2] [3] [4]

NIH×Post-04/08 .0430 -.0504 -.0241 .0545
(.0383) (.0483) (.0633) (.0476)

(in % terms) 4.4 -4.9 -2.4 5.6
NIH dummy .2230*** .2592*** .0578 .3295***

(.0220) (.0267) (.0361) (.0277)
Observations 61408 61408 61408 61408
[1]: Assigned Patents
[2]: Unassigned Patents
[3]: Corporate Assignee
[4]: University Assignee

The unit of observation is the academic article. The de-
pendent variable in all estimates is the probability of at least one
cite of the listed type. All estimates are Poisson pseudo-maximum
likelihood with Huber-White robust standard errors, and all
include journal dummies and a publication month quadratic. �In
% terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A7: Di�erence in Di�erence Subgroup estimates II

University University Corporate Corporate Small Corp. Small Corp.

NIH×Post-04/08 .2565*** .1548* .0390 .2732** .0761 .2290**
(.0519) (.0910) (.0711) (.1274) (.0866) (.1141)

(in % terms) 29.2 16.7 4.0 31.4 7.9 25.7
NIH dummy .3992*** .5343*** .1902*** .0099 .2143 .1728

(.0343) (.0634) (.0452) (.0923) (.0550) (.0752)
Pr(≥ 1 patent cite) Y Y Y
Pr(total patent cites) Y Y Y
Observations 71337 71337 71337 71337 71337 71337
[The unit of observation is the academic article. Small corporations
are cites from �rms other than the 27 large biotech and pharma
�rms described in Online Appendix 1. All estimates are Poisson
pseudo-maximum likelihood with Huber-White robust standard
errors, and all include journal and publication month dummies. �In
% terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A8: Di�erence in Di�erence Subgroup estimates III

≤ 2 Inventors ≤ 2 Inventors ≥ 3 Inventors ≥ 3 Inventors ≥ 5 Inventors ≥ 5 Inventors

NIH×Post-04/08 .2535*** .2472*** .1680** .2057** .1463** .1950*
(.0508) (.0920) (.0452) (.0918) (.0707) (.1191)

(in % terms) 28.9 28.0 18.3 22.8 15.8 21.5
NIH dummy .3277*** .3584*** .2884*** .2759*** .2386*** .1111

(.0329) (.0648) (.0299) (.0671) (.0459) (.0839)
Pr(≥ 1 patent cite) Y Y Y
Pr(total patent cites) Y Y Y
Observations 71337 71337 71337 71337 71337 71337
The unit of observation is the academic article. All estimates are Poisson pseudo-
maximum likelihood with Huber-White robust standard errors, and all include journal
dummies and a publication month quadratic. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A9: Treatment E�ect Weighting Cites by Forward Patent Citations

[1] [2] [3]

NIH×Post-04/08 .1890 .1309* -.0630
(.1848) (.0727) (.0812)

(in % terms) 20.8 14.0 -6.1
Total Citations .0096***

(.0018)
NIH dummy .3106** .3935*** -.0319

(.1273) (.0453) (.0672)
Observations 71337 71337 9987
[1]: Patent Citations Weighted by Forward Patent Citations
[2]: Binary that article is cited at least once by at least one
patent with at least one forward citation
[3] Average quality of citing patents (weighted cites divided by
total cites), restricting estimation to articles with at least one
patent citation

The unit of observation is the academic article. All estimates are
Poisson pseudo-maximum likelihood with Huber-White robust
standard errors, and all include journal and publication month
dummies. �In % terms� is equal to eβ.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A10: Primary Estimates Using OLS, Logit, Probit

Total Cites ≥ 1 Cite Total Cites ≥ 1 Cite Total Cites ≥ 1 Cite

NIH×Post-04/08 -.1864*** -.0324*** -.0619*** -0225*** .0427* .1413***
(.0490) (.0061) (.0080) (.0043) (.0264) (.0480)

(in % terms) 2.5 10.7
NIH dummy .2794*** .0755*** .1038*** .0523*** .2489*** .4305***

(.0472) (.0054) (.0072) (.0037) (.0648) (.0338)
Logit Y
Probit Y
OLS Y Y
OLS ln(n+1) Y Y
Observations 71337 71337 71337 71337 71337 71337
The unit of observation is the academic article. All estimates with Huber-
White robust standard errors, and all include journal dummies and a
publication month quadratic. �In % terms� is equal to the average marginal
e�ect over the post-period NIH-funded average number of cites or propensity
to be cited.

Statistical signi�cance indicators: *: .1, **: .05, ***: .01
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Table A11: Geography of Medical Research and Frontier-Citing Patents

State Articles Patents Rank Country Articles Patents Rank

MA 1139.7 382.3 1 Switz. 253.8 58.0 2
DC 1133.3 55.0 13 Nether. 226.0 18.9 9
MD 964.4 164.2 2 US 191.0 57.3 3
CT 361.1 96.0 4 Denmark 159.5 38.2 4
MN 355.7 40.7 18 Sweden 157.1 31.4 5
NY 302.9 66.6 10 Canada 152.0 25.2 7
PA 284.3 83.1 5 UK 144.2 14.2 16
RI 279.0 52.0 14 Finland 137.0 14.8 14
CA 210.1 130.4 3 Israel 123.5 63.5 1
NC 210.1 50.7 15 Australia 107.8 15.1 12
MO 208.5 35.3 20 Germany 105.4 18.0 11
NH 206.9 81.5 7 Austria 103.9 18.4 10
WA 201.7 80.0 8 Belgium 101.9 24.7 8
OH 180.5 27.0 26 Singapore 99.8 30.9 6
Articles and citing patents are reported per 100,000 population. Rank refers to
the rank of the state or country in terms of frontier-citing patents per capita.
Country list omits those with population below 500,000 (in which case Iceland
would rank #1 in patents per capita).
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Figure A1: Monthly PubMed Central downloads, sampled each year in October to iso-
late the trend from seasonal variation. Data courtesy the National Insitutes of Health.
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Figure A2: Change in probability of NIH funding over time. The red (center) line
represents April 2008, and the pink (left and right) lines represent two months before
and after the o�cial beginning of the policy.
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Figure A3: Sample consists of all medical research articles in the subset of 30 journals
that generally do not make research freely available unless forced to. �Open access�
refers to the article being freely available in the PubMed Central repository within 18
months of publication. As opposed to Figure 1, this restriction better accounts for
articles that were not made freely available until years after publication, but does not
account for articles freely available via a publisher website or an academic repository
only. The red (center) line represents the April 2008 NIH policy, and the pink (left and
right) lines represent two months before and after the o�cial beginning of the policy.
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Figure A4: Raw di�erence in patent and academic citation rates between open access
and gated articles, by publication month. The open access advantage in the raw data
remains even when controlling for journal, funder, and month �xed e�ects, as seen in
Online Appendix Table A1.
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Figure A5: Estimated ppml coe�cient on the interaction term After April 2008 ×
NIH-funded, constructed on a journal-by-journal basis. Publication month, journal
and funder �xed e�ects are constant across journals as in the primary regressions.
Three journals for which the small sample size generates very large standard errors
were dropped from the above chart.

Note that the positive e�ect of open access, whether measured in terms of total
patent citations or the probability an article has at least one patent citation, can be
seen across a wide swath of journals. Among �una�ected� journals, only the New
England Journal of Medicine and Genome Research have positive treatment e�ects.
The New England Journal of Medicine began making their archives free-to-read
without registration in December 2007 (they had been free after a registration process
since 2001) just four months before the NIH policy began, which may explain why the
NIH policy appears to positively a�ect the NEJM in the di�-in-di�.
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Figure A6: Comparison of the skewness of in-speci�cation citations versus prior art
citations. The �gure includes in-speci�cation citations made by patent applications in
2011 to academic papers, and the prior-art citations made by grants of the same patent
applications from 2011. Note that the skew of these citations is quite similar, and that
there is very little overlap between the citation types.
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Figure A7: Ratios of front page citations for NIH funded articles versus non-funded
articles, by article publication month. The top panel gives the ratio of total patent
citations. The bottom panel gives the ratio of propensities to have at least one patent
citation. Articles restricted to the thirty journals which generally do make articles freely
available unless required by a mandate. The red (center) line represents April 2008,
and the pink (left and right) lines represent two months before and after the o�cial
beginning of the policy. Note that front page citations can only occur on granted
patents.
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