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Artificial intelligence (or AI) adoption is
often equated with automation, with ma-
chines replacing humans in tasks and de-
cisions. In practice, however, AI often
augments human activity. Consider par-
tially self-driving cars with human override,
suggested scripts for customer service, and
scoring for risk or priority in hiring, audits,
judicial sentencing and fraud detection. De-
cisions often involve considerations that are
difficult to digitize. Prior knowledge can
be important for anticipating outcomes in
novel or unusual circumstances. In these
contexts, the automated predictions of fully
automated AI can be insufficient even when
AI reduces the cost of prediction along some
margins (Agrawal et al. [2019]). This moti-
vates an analysis of precisely how humans
and AI would work together.

Using Aghion and Tirole [1997] altered
to focus on human-AI interactions, we con-
sider a principal who decides whether to
give a human agent or an AI authority in
making a decision. How does the introduc-
tion of the AI affect human effort? When
AIs predict well, might humans decrease ef-
fort too much (“fall asleep at the wheel”)?
When should the AI or the human have
the right to make the final decision? Are
“better” AIs in a statistical prediction sense
necessarily more profitable for an organiza-
tion? While others have examined the im-

∗ Athey: Stanford NBER, athey@stanford.edu,

Bryan: Toronto, kevin.bryan@rotman.utoronto.ca,

Gans: Toronto NBER, joshua.gans@utoronto.ca.
Thanks to Jorge Guzman for an excellent discussion.

plementation of AI in organizations,1 this is
the first paper that focuses explicitly on the
interaction of control problems for humans
versus AI.

I. Model Set-up

The initial model setup follows Aghion
and Tirole [1997] where there is a princi-
pal (P ) who allocations decision authority
and a (human) agent H who expends ef-
fort in learning information about the (ex-
pected) value of a set of projects. The
projects have payoffs to P and H respec-
tively of (αB, b), (B, βb) and (−KP ,−KH)
but which project has which payoff is, ini-
tially, unknown. We assume that both α
and β, the ‘congruence parameters,’ lie on
(0, 1] making the first and second projects
agent and principal preferred respectively.
In addition, there exists a neutral project
with payoff normalized to (0, 0). As in
Aghion and Tirole [1997], it is assumed that
(−KP ,−KH) is sufficiently negative that
both P and H would prefer the neutral
(or no implementation) choice over a blind
choice over all projects.

Initially, the agent does not know any
project’s value, but following Aghion and
Tirole [1997], can select effort e at cost
g(e), and thus learn the agent’s payoff for
all projects with probability e. We assume
disutility of effort is increasing, strictly con-
vex, g(0) = 0, g′(0) = 0, and g′(1) =

1For instance, Agrawal et al. [2019], and Dogan

et al. [2018]
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∞. Note that, absent other information
or decision-makers, when an agent learns
project payoffs and selects their preferred
project, the principal prefers that choice to
the neutral project.

Similarly, if the principal has an AI of
capability E available, we assume that AI
can, without any additional cost, learn the
value of all projects with probability E. In
this case, the AI will be able to select (or
communicate costlessly to P ) which project
is the principal’s preferred project.2 E is
assumed to be common knowledge.

We consider the following timing. First,
decision rights are allocated: either the AI
or the agent is delegated formal final deci-
sion authority. Second, the agent chooses
how much effort to exert. Third, the non-
delegated player then reports any subset
of project payoffs to the delegated player,
where this report is verifiable. Finally, the
delegated player chooses a project.

We also assume that the participation
constraint for the agent is never violated;
that is, we consider only how decision rights
affect the agent’s intensive margin of effort
searching for projects. Letting the agent
outside option be 0 suffices.

II. Allocating Decision Authority

P ’s choice regarding whether to give H or
the AI decision authority depends on their
payoff in anticipation of H’s choice of ef-
fort in learning about project payoffs. If H
holds decision rights, payoffs are as follows:

uP = eαB + (1− e)EB

uH = eb+ (1− e)Eβb− g(e)

2In Aghion and Tirole [1997], P was assumed to
have the ability to learn project values with probability
E provided they incurred an effort cost. Here, we have
endowed P with an AI that can learn on their behalf
and H knows the AI’s capabilities.

That is, the agent learns the principal’s pre-
ferred project with probability e and imple-
ments it. Otherwise, the agent accepts the
AI’s preferred action if the AI makes a rec-
ommendation, and implements the neutral
action otherwise. If the AI holds decision
rights, these payoffs become:

uP = EB + (1− E)eαB

uH = Eβb+ (1− E)eb− g(e)

In this case, if the AI learns the payoffs, the
principal will implement the project they
prefer, otherwise, if only the agent learns
the payoffs, the principal will accept the
agent’s recommended project.

Let êH and êAI be the agent’s effort
choices under its own (human) authority
and the AI’s authority respectively. These
are determined by the following first order
conditions:

(1− Eβ)b = g′(êH)

(1− E)b = g′(êAI)

A comparison of these conditions shows
that the human’s marginal benefit of learn-
ing is higher when they hold decision rights
(as β ≤ 1) so that êH ≥ êAI . This formal-
izes a cost of delegating to an AI: when the
AI has decision rights, the agent is tempted
to “fall asleep at the wheel” since the AI
frequently makes the choices. Even when
the agent has decision rights, if the AI is
an attractive “backstop” (that is, the AI’s
recommended project is more aligned with
the agent as β increases), then the agent
also has reduced incentives for effort. Fi-
nally, agent effort is decreasing in the ‘qual-
ity’ (E) of the AI; that is, they are strategic
substitutes.

Given this, P will choose to give the
AI (rather than H) decision authority if:

1−E
1−E 1

α
≥ êH

êA
. As the RHS exceeds 1, AI au-
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thority is only optimal if α is sufficiently
low. If E ≥ α, AI authority is always opti-
mal; the human is so misaligned that even
arbitrary human effort provision due to del-
egation is less profitable than the imperfect
AI making final decisions. Thus, in deter-
mining whether to give the AI decision au-
thority, P will weigh the potentially greater
reliability of the AI in selecting projects
against the difficulty of motivating H to ex-
pend more effort to identify projects with
non-negative returns for P .

III. The Demand for AI Performance

Given that, in the model thus far, there
is no cost to P in developing an AI with
higher performance, E, it is natural to pre-
sume that only technical constraints would
limit the level of E employed. However, as
the above analysis shows, when the prob-
ability that the AI learns project payoffs
increases, the effort expended by the hu-
man agent falls. This reduces the payoff
to P as it reduces their payoff in the sce-
narios where the AI does not learn project
payoffs. Does this possibility imply that P
might choose to deploy an AI with perfor-
mance below what is technically feasible?

To answer this question, we begin by
identifying the conditions under which P
utility will be non-decreasing in E for all
E.

PROPOSITION 1: The principal will al-
ways prefer an AI with higher E if (i) α is

sufficiently low or (ii) | g′(êAI)

g′′(êAI)(1−êAI)
| ≤ 1.

The proof is as follows. The derivative
of P utility in E when the AI has decision
authority is:

duP
dE

= (1− êAIα)B +
dêAI
dE

α(1− E)B

and when the agent has decision rights is

duP
dE

= (1− êH)B +
dêH
dE

(α− E)B

When are these derivatives non-negative?
Note first that for α close to 0 each of these
derivatives are positive as ê is independent
of α. Rearranging terms and assuming

that α > E, we need |dêAI
dE
| ≤

1
α−e
1−E and

|dêH
dE
| ≤ 1−e

α−E . As α → 1, both inequalities

collapse to | dê
dE
| ≤ 1−e

1−E . That is, as E → 0,

we need dê
dE
→ 0: H effort needs to decrease

arbitrarily slowly in E when E is low. Note
that |dêAI

dE
| = | b

g′′
| > |dêH

dE
| = β| b

g′′
| and un-

der AI authority, b = g′(êAI)

1−E meaning that
with substitutions the condition becomes
(ii).

This shows that so long as (i) P andH are
not sufficiently aligned in their project pref-
erences or (ii) the responsiveness of H effort
to improvements in E is not too great, then
the impact of better AI on the incentives
of the agent will not outweigh the benefits
P receives from employing that AI. Signifi-
cantly, the analysis in the proof shows that
even if α = 1 and there is goal congruence,
the principal may not prefer a better E if
this has a sufficiently adverse effect on agent
incentives (condition (ii) in the Proposition
fails).

To see this more clearly, assume that
g(e) = 1

2
e2 and b = 1, we have uP = EB +

(1−E)(1−E)αB and uP = (1−Eβ)αB+
(1 − (1 − Eβ))EB for the cases with and
without AI authority. Then, the marginal
benefit of increasing E is (1− 2(1−E)α)B
(AI authority) or (2E − α)B (H author-
ity). Thus, even under AI authority, P does
not always prefer a higher E. Indeed, for
E < 1− 1

2α
, P would prefer a lower E and

even for E up to 2 − 1
α

may prefer not to
employ an AI at all. Under H authority,
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it is only when E ≥ α that the principal
would employ an AI.

Intuitively, while it is the case that P
would employ a perfect AI (with E = 1)
and give it decision authority if that AI were
available, when AI is imperfect, P may pre-
fer to reduce the reliability of the AI as a
means of encouraging more H effort. Note
that the benefit to AI over H authority is
(1−α)(1− 2E)B which is decreasing in E.
Thus, the lower is the performance of the AI
(because of technical feasiblity or choice),
the more likely is P to choose H rather than
AI authority.

Another way to consider AI performance
is from the perspective of bias. Suppose
that even if the AI learns project payoffs, it
does so imperfectly so that with probability
µ it recommends P ’s preferred project but
otherwise recommends a project with pay-
offs of (ᾱB, β̄b) where ᾱ ≤ α and β̄ ≤ β.
In this case, P and H payoffs under AI au-
thority are:

uP = E(µ+ (1− µ)ᾱ)B + (1− E)eαB

uH = E(µβ + (1− µ)β̄)b+ (1−E)eb− g(e)

and under H authority are:

uP = eαB + (1− e)E(µ+ (1− µ)ᾱ)B

uH = eb+ (1− e)E(µβ + (1− µ)β̄)b− g(e)

Note that while H’s effort does not change
with µ under AI authority, under H author-
ity it falls with µ. Intuitively, as more bias
(1 − µ) is introduced, the human agent is
more motivated to avoid the AI making de-
cisions as those decisions are more likely to
be poor outcomes for H. A lower µ cre-
ates an AI that antagonizes H. Thus, even
though a biased AI may not be preferred,
ceteris paribus, by P , it may be employed
under H authority so that the human agent

relies less on the AI so long as β−β̄
1−ᾱ (i.e.,

the degree to which the AI choice harms H
more than P ) is sufficiently high.3

IV. A Taxonomy

The tradeoff of human effort and decision
alignment from decision rights and AI qual-
ity generates a taxonomy of optimal AIs.
This taxonomy is shown in Table 1 under
the regimes of AI and human authority, and
whether the principal has a preference for
better AI under each.

The different types of AI are as follows:

• Replacement AI: If a high perform-
ing AI is available (i.e., E close to
1 and sufficiently unbiased), then the
AI should hold decision rights and AI
training focuses on eventually fully re-
placing humans.

• Augmentation AI: If current AI per-
formance is relatively weak (E suffi-
ciently low), human agents sufficiently
well aligned with the principal, and
human effort only weakly responsive
to changes in AI performance, then
human agents retain decision rights,
and marginal improvements in AI per-
formance or decreases in AI bias are
profit-enhancing.

• Unreliable AI: When human agents
are poorly aligned with the principal
and potential AI performance is rela-
tively strong, the AI optimally holds
final decision rights. However, human

3Of course, decreasing µ has to be considered to

be a better option than switching back to AI authority.
Using our earlier functional form, under H authority,
êH = (1 − E(µβ + (1 − µ)β̄)b and, examining, duP

dµ
as

µ→ 1, we can see that it will be worthwhile to introduce

bias if (β− β̄)b(α−E) > (1− (1−E)b)(1− ᾱ)α. If this
condition holds, then it is optimal to introduce some

bias and employ an antagonistic AI if H authority is
otherwise optimal with µ = 1.
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Table 1—: AI Taxonomy

AI Authority H Authority
Better AI Replacement AI Augmentation AI
Worse AI Unreliable AI Antagonistic AI

effort is still important when the AI
does not learn the optimal action, so
if human effort is highly responsive to
incentives, “unreliable” AI (lower E
than technically feasible) is optimal as
it trades off worse performance when
the AI thinks it learns the optimal ac-
tion against more human effort when it
does not.

• Antagonistic AI: If current AI per-
formance is relatively weak and human
agents sufficiently well-aligned with the
principal, but human effort strongly re-
sponds to changes in AI performance,
then humans should retain decision
rights. However, unlike with Augmen-
tation AI, it is optimal to bias an
AI such that the AI action is par-
ticularly bad for the agent. When
the AI’s choice “antagonizes” human
agents, they increase effort to avoid the
AI’s recommendation being reported
to the principal.

This taxonomy leaves many potential de-
tails out, but it maps the broad choices for
organizations in terms of whether to give
an AI or a human decision authority and,
in turn, whether to favor a technically supe-
rior (i.e., reliable and unbiased) AI or not.
This choice will depend on the nature of hu-
man reactions to working with AI as well as
what is technically available to the organi-
zation.

On the latter point, we note here that
the data that is used to train the AI may

be relevant. For instance, replacement AI
may require a high degree of reliability and,
therefore, may require training based on re-
peated experiments rather than data that
may be at hand. The same is true for aug-
menting AI although the organization may
be more tolerant of data that is generated
by past human decision observations. For
unreliable AI, there may be reasons to forgo
extensive data training while for antagonis-
tic AI, data that identifies outcomes that
humans dislike may be valuable. In future
work, we will explore the issues of training
data - in particular, how these interact with
human incentives both past and present -
in order to develop a clearer picture of the
types of AI that may be employed at differ-
ent stages of AI adoption in organizations.
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