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Abstract

We construct a tractable general model of the direction of inno-
vation. Competition leads firms to pursue inefficient research lines,
because firms both race toward easy projects and do not fully appro-
priate the value of their inventions. This dual distortion will imply
that any directionally efficient policy must condition on the proper-
ties of hypothetical inventions which are not discovered in equilibrium,
hence common R&D policies like patents and prizes generate subop-
timal innovation direction and may even generate lower welfare than
laissez faire. We apply this theory to radical versus incremental inno-
vation, patent pools, and the effect of trade on R&D.

It has long been conjectured that laissez faire markets will not produce
the optimal quantity of innovation due to indivisibilities, where the fixed cost
of R&D is only fully paid by the initial inventor, and inappropriability, where
research generates spillovers on subsequent inventions (Arrow (1962)). Mech-
anisms like patents and R&D subsidies attempt to restore efficient research
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effort, and to do so without requiring the planner to know the research pro-
duction functions of firms or the ex-ante expected value of their inventions.
However, firms do not simply choose how much R&D to do, but also how to
allocate their scientists across different research projects. For example, early
semiconductor researchers could have worked with silicon or germanium, nu-
clear plants could have been developed using either water or deuterium as
a moderator, and early automobile designers could have focused their effort
on gasoline-powered, steam-powered or electric-powered vehicles. These po-
tential inventions may differ in how hard they are to invent, in how valuable
they are, and in which future research opportunities they make possible. A
natural question therefore arises: how do policies intended to optimize the
quantity of research affect the direction of that research?

We construct a theoretical model of innovation direction similar in spirit
to existing workhorse models of innovation effort. Our model is tractable
even though we permit firms to work on an arbitrary set of inventions at
any time, with arbitrary links between inventions today and the nature of
inventive opportunities in the future. We generate three primary theoretical
results. First, even if the total quantity of research is optimal and even if
firms receive the full social value of their inventions, two distinct classes of
directional distortion remain, which we call “racing” and “underappropria-
tion” distortions. Second, moving from laissez faire to a system with patents
or subsidies can make these distortions strictly worse. Third, directional
inefficiency is a property of every innovation policy which both rewards in-
ventors and does not condition on the properties of inventions which are not
invented in equilibrium. That is, the possibility of directional inefficiency
places fundamental limits on the efficacy of decentralized “autopilot” inno-
vation policy.

Intuition for the two main classes of directional distortion generated by
our model can be seen in two simple examples. In Figure 1, there are two
potential inventions, A and B. Two firms have one indivisible unit of research
that can be costlessly allocated to either invention. Assume that inventors
appropriate the full social value of their invention, and that once either in-
vention is discovered, the marginal value of the other invention immediately
falls to zero. That is, only the first invention has any value. Let A be rel-
atively easy, such that if one firm researches A while the other researches
B, A is discovered first with probability 3

4
. If firms both work on the same

invention, they are equally likely to discover it first.
If both firms work on A, with probability one A is discovered and $12 of
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A B

Easy to invent,
worth $12

Three times harder,
worth $16

Figure 1: The racing distortion

value is created, and if both work on B, $16 is created. If one firm works
on A and the other on B, with probability 3

4
A is invented first, and with

probability 1
4

B is invented first, creating a total value of 3
4
·$12+ 1

4
·$16 = $13.

The efficient solution involves both firms working on B, creating $16 of value.
However, working on B is not an equilibrium. A firm earns $8 in expectation
when both work on B, but it earns 3

4
· $12 = $9 from deviating and working

on A. The firm that deviates does not properly account for the fact that
when it makes a discovery, the rival firm can no longer earn any surplus
by discovering the now-worthless alternative invention. Notice that this is
precisely the intuition of the racing distortion of classic patent race models
like Loury (1979) in a directional context, substituting the extensive margin
of which project to work on for the intensive margin of how hard to work,
and the opportunity cost of foregone inventions for the cost of research effort.

Racing behavior is not the only way direction choice can induce ineffi-
ciency. In Figure 2, again let there be two firms allocating one indivisible
unit of research each, and let there initially be two equally easy inventions
A and B. Since they are equally easy, the probability a given firm invents
first is 1

2
regardless of what the other firm works on, hence there is no racing

distortion. In addition, assume that once A is invented, it becomes possible
for each firm to work on a third invention, C. Further, assume that once A
is invented, the marginal value of B falls to zero, and once B is invented, the
marginal value of both inventions A and C fall to zero.

The most social value, $12, is created when both firms work on A and
then on C. Each firm expects to earn $6 under this research plan, but this
is not an equilibrium. A firm that deviates by working on B instead of
A will finish first with probability 1

2
, earning $10. If A is invented before

B, the deviating firm can still try to invent C at that point, earning 1
2
·

$8 = $4 in expectation. The expected payoff of the deviation is 1
2
· $10 +

1
2
· $4 = $7, hence deviating is profitable. This example illustrates that
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A B

C

Easy to invent,
worth $4

As easy as A,
worth $10

As easy as A,
worth $8

Figure 2: The underappropriation distortion

inventors do not properly account for how their inventive effort today affects
the nature and availability of socially valuable projects other firms might
invent in the future. This is precisely the intuition of the underappropriation
distortion of sequential innovation models like Green and Scotchmer (1995)
in a directional context, substituting distortion toward research lines where
sequential inventions are relatively unimportant for inefficient effort along
the intensive margin in a single sequential research line.

Our formal model will show that if we abstract away from known distor-
tions in the market for R&D — for instance, if the total quantity of research
is fixed at the socially optimal optimal level, if the research sector captures
the full social value of their inventions, if researchers can be induced to work
without agency problems, and if there is perfect knowledge among all firms
about research opportunities today and in the future — then a competitive
research sector will nonetheless be inefficient because of a combination of
racing and underappropriation distortions. This dual distortion means that
policies like patents and prizes will not necessarily improve efficiency, unlike
in models where laissez faire research effort is inefficient.

Consider first patents, which let an inventor today capture the value of
projects tomorrow which build on her invention. Patents cause firms to in-
ternalize the fact that their inventions today make future inventions easier or
possible in the first place, but they do not fix, and may make worse, the racing
distortion. Firms will be induced to race toward any invention which garners
an industry-pivotal patent, regardless of whether that particular technology
lies on a research line which is easy to productively extend. Prize contests
are likewise problematic, as prizes for inventions exceeding a technological
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threshold exacerbate racing behavior toward lower-value projects which are
just sufficient to garner the prize. Prizes given only to difficult technologi-
cal achievements will push firms toward those types of projects, but if the
optimal projects are easy yet avoided because of underappropriation, such a
policy may simply make equilibrium directional distortion worse.

Note that patents and prize contests both condition inventor rewards
solely on the properties of realized inventions, and not on properties of un-
realized alternative research projects in the same technological area. Indeed,
this is an important virtue of these types of policies: they can be run “auto-
matically” by a planner who is ignorant of anything except ex-post observable
features of inventions. However, when directional distortion is important,
whether firms are deviating toward easy though potentially low-value inven-
tions because of the racing distortion, or toward immediately lucrative yet
potentially difficult inventions because of the underappropriation distortion,
depends on the properties of all inventions including those which are not ac-
tually invented in equilibrium. Therefore, innovation policy which does not
condition on the properties of those unrealized potential inventions, proper-
ties which may be very hard for the planner to observe, will be unable to
restore directional efficiency across industries.

In the remainder of the paper, we develop the above intuition formally.
In Section 1, we show how to construct planner-optimal and equilibrium dy-
namic research allocation for an arbitrary set of inventions with unrestricted
linkages in how earlier inventions affect the value or difficulty of future in-
ventions. In Section 2, we show that, in this general model, equilibrium
directional inefficiency is driven by a combination of racing and underappro-
priation distortions qualitatively similar to those in the examples above. In
Section 3, we show that laissez faire, patents of various strengths, and prizes
cannot be ranked in terms of welfare, and that every policy which rewards
inventors more than non-inventors and does not condition on the properties
of off-equilibrium-path inventions cannot guarantee directional efficiency. We
discuss four applications of the theory in Section 4. All proofs, and a number
of generalizations, are left to the appendices.

Our results differ from the existing literature in restricting attention to
the distortion between the planner and the firms when there are multiple
projects available at any time, and success on a project changes the nature
of research targets available in the future.1 That is, we study inefficiency

1That firms may lack correct directional incentives in R&D is a longstanding worry,
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in research lines. The distortions generated, and the relative advantages of
different mitigating policies, do not depend in any way on information ex-
ternalities (as in bandit models like Keller and Oldale (2003) and Chatterjee
and Evans (2004)), changing preferences (Acemoglu (2011)), changing factor
prices (Kennedy (1964), Samuelson (1965), Acemoglu (2002)), simultaneous
discovery (Dasgupta and Maskin (1987)), heterogeneity across firms in size or
internal organization (Holmstrom (1989), Aghion and Tirole (1994)) or dif-
ferences in researcher desire for autonomy (Aghion, Dewatripont and Stein
(2008)).2 Our distortions arise even if the total quantity of research is op-
timal, and even if there is no gap between the social and private return to
individual inventions.3

Directional inefficiency may be of particular importance due to limits
on the ability of policy to affect the rate of innovation. Even when basic
research has a high marginal return, both privately and socially, the return
to government-sponsored R&D is often much more limited (e.g., David, Hall
and Toole (2000), Lerner (1999)). This result is partially due to crowding out:
the supply of trained scientists is essentially fixed in the short run (Goolsbee
(1998)). If crowding out limits how planners can affect the rate of inventive
activity, affecting R&D direction may be a first-order effect of government
policy. Our results suggest fundamental limits on existing policy levers in

however. Nelson (1983) argues that “[i]t is not so much that private expenditures will be
too little in the absence of government assistance. The difficulties lie rather in the fact
that the market, left to itself, is unlikely to spawn an appropriate portfolio of projects.”

2A discrete version of Acemoglu’s 2011 result can be seen in our framework. He allows
consumer preferences over technology lines to change. Patents are of finite length, so with
some probability work on a line consumers do not value may not be worth anything until
after the patent expires, and hence firms exert too much effort on lines where rents can
be accrued in the near future. In our model, the possibility of preferences changing just
feeds into the continuation value following some invention; firms undervalue social payoffs
that accrue through the continuation value rather than immediately, since part of that
continuation is captured by competitors.

3The most similar result we are aware of, though in the context of a structural en-
dogenous growth model, is Akcigit, Hanley and Serrano-Velarde (2013), which suggests
like our model that “neutral subsidies” like R&D tax credits operate by increasing the
total amount of R&D without correcting the distortion toward applied research. A math-
ematically similar model to ours of direction choice applied to the context of competing
patent races appears in a new working paper by Hopenhayn and Squintani (2016). In their
model, firms in the analogue of our laissez faire equilibrium work first on relatively easy
inventions even when working in this “hot” area is socially undesirable. The fundamental
reason is very similar to the racing distortion in our model.
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restoring directional efficiency.

1 The Model

Consider a finite set of states Ω, where s ∈ Ω represents a level of technology,
or a collection of existing inventions. Transitions between states are associ-
ated with two parameters {λ, π}, where we define λ : Ω × Ω → R+ as the
simplicity to transition between any two states, and π : Ω× Ω→ R+ as the
incremental immediate social payoff from a transition. When λ(s, s′) = 0,
state s′ cannot be reached with one invention from state s. For each state
s ∈ Ω, the set S(s) ⊆ Ω represents all the states such that λ(s, s′) > 0. We
refer to the initial state of technology as s0.

Definition 1. An invention graph is represented by the triplet {Ω, λ, π} de-
scribing all potential states Ω of knowledge in a technological area, the sim-
plicity λ : Ω × Ω → R+ of transitioning between them, and the immediate
social payoff π : Ω× Ω→ R+ from such a transition.

The invention graph is common knowledge and all discoveries and inven-
tive effort are publicly observed.4

As an example, consider the case of three inventions represented by the
invention graph in Figure 3. In this example, the possible states of technology
are given by Ω = {s0, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}}. The transition and
payoffs are given by the parameters {(λk, πk)}9

k=1. There is an arrow between
states s and s′ if and only if λ(s, s′) > 0. In state s0, only inventions 1 or 2
can be discovered in one step, and once either 1 or 2 have been discovered,
research on invention 3 can begin.

4Relaxing the assumption that all future parameter values are commonly known to
an assumption that only the distribution of parameter values in future states is known
will not change our qualitative results. With perfect information, this assumption would
merely change the expected continuation value following any invention, which will appear
as an arbitrary parameter in Proposition 2. Indeed, if inventions today publicly resolve
uncertainty about future parameter values, then inventions potentially create information
useful to all parties, generating a positive externality. Thus, inventions which create a
lot of useful information will be undersupplied by firms in equilibrium. We will not focus
on these types of information transmission externalities in the remainder of this paper, as
they are well-known from the multi-armed bandit literature (e.g., Keller, Rady and Cripps
(2005)).
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Our model allows state contingent payoffs and simplicities. In Figure
3, λ2 and λ4 are unrestricted, meaning that the discovery of invention 1
may increase (λ2 > λ4), decrease (λ2 < λ4), or keep constant (λ2 = λ4) the
difficulty of discovering invention 2. Similarly, π2 and π4 can differ, capturing
substitutability or complementarity between inventions 1 and 2.

In the remainder of the paper, we refer abstractly to states without ref-
erence to the exact bundle of inventions a particular state embodies, calling
states s′ ∈ S(s) projects, research targets, or inventions.

s0

{1} {2}

{1, 2}{1, 3} {2, 3}

{1, 2, 3}

(λ1, π1) (λ2, π2)

(λ3, π3) (λ4, π4) (λ5, π5) (λ6, π6)

(λ7, π7)(λ8, π8) (λ9, π9)

Figure 3: A simple invention graph.

1.1 Production Technology

There are N risk-neutral firms each endowed with M
N

units of research, where
M represents the total measure of researchers in society. Let xi(s, s

′) ≤ M
N

be the flow amount of research allocated by firm i toward state s′ ∈ S(s)
when the current state is s, and let x(s, s′) =

∑
i xi(s, s

′) be the aggregate
flow amount of research toward state s′.5 Research is costless, so the problem

5Although time is continuous in our model, optimal and equilibrium strategies will
be constant between state transitions, hence we omit time subscripts. Intuitively, no
information is revealed and no changes in the strategy set or payoffs occur between state
transitions.
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is one of pure allocation of research resources.
As in patent race models, the probability of discovering s′ given xi(s, s

′)
in a given interval of time is determined by the exponential distribution,
with hazard rates λ(s, s′)xi(s, s

′) linear in effort, independent across firms,
and independent across research lines within any firm.6 Therefore, the un-
conditional probability of a transition from s to s′ in an interval of time τ is
given by 1− exp(−λ(s, s′)x(s, s′)τ).

In the remainder of the paper, we will omit some indexes for ease of
notation, denoting xi(s, s

′) simply as xis′ , and likewise for similar variables,
when it is clear that s′ ∈ S(s).

1.2 Planner Problem

Since the invention hazard rates are linear and independent across firms,
a risk-neutral social planner needs only decide how to allocate all M units
of research across projects. The expected discounted value of the invention
graph for the planner at state s ∈ Ω is defined recursively as

Vps = max∑
s′∈S(s) xs′=M,

xs′≥0, ∀s′∈S(s)

∫ ∞
0

e−rte
−

∑
s′∈S(s)

λs′xs′ ·t ∑
s′∈S(s)

λs′xs′ · (πs′ + Vps′)dt

That is, after reaching state s, the planner chooses the allocation x =
(xs′){s′∈S(s)} to maximize the future discounted payoff: the integral with re-

spect to time of the probability that no invention has occurred (e−
∑
s′∈S(s) λs′xs′ t),

times the immediate hazard rate of each research line (λs′xs′), times the dis-
counted (e−rt) payoff summed over all possible inventions inclusive of con-
tinuation value from a discovery along that line (πs′ + Vps′). Simplifying
the expression above, the social planner problem is to solve the recursive
maximization problem:

Vps = max∑
s′∈S(s) xs′=1,

xs′≥0, ∀s′∈S(s)

∑
s′∈S(s)

Mλs′xs′ [πs′ + Vps′ ]

r +
∑

s′∈S(s)

Mλs′xs′

6In the Online Appendix, we generalize to a hazard rate that is concave or convex in
xi(s, s

′). There are technical difficulties with this objective function (in particular, non-
pseudoconcavity) which do not appear, for example, in one-shot models like Reinganum
(1981), but our main qualitative results do not change.
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1.3 Firm Problem

Let policy P determine the transfers received by firms following an invention.
In particular, P specifies transfer w(s, s′) received by inventors and transfer
z(s, s′) received by noninventors following any invention. At each state s ∈ Ω,
the equilibrium continuation value for firm i following a transition to s′ ∈
S(s) given policy P is denoted ViPs′ .

7 The firm problem is to allocate its M
N

units of research among the projects s′ ∈ S(s), conditional on other firms’
allocations and the policy rule. Once any firm discovers some invention
s′ ∈ S, all firms reallocate effort across the new set of potential research
targets S(s′).

Denote a−is′ =
∑
j 6=i

xjs′ as the total research allocated towards invention

s′ by firms other than i. Given the strategies of rivals a−i = (a−is′)s′∈S(s) and
the policy rule P , the expected discounted value of firm i at state s can be
written recursively as

ViPs|a = max∑
s′∈S(s)

xis′=
M
N ,

xis′≥0, ∀s
′∈S(s)

∫ ∞
0

e
−rt−

∑
s′∈S(s)

(a−is′+xis′ )λs′ t∑
s′∈S(s)

λs′ [xis′(ws′+ViPs′)+a−is′(zs′+ViPs′)]dt

The strategy of each player depends on the current state, the equilib-
rium continuation value, and the current allocation of effort of rival firms.
Simplifying this expression, firms solve:

ViPs|a = max∑
s′ xis′=

M
N
,

xis′≥0, ∀s′∈S(s)

∑
s′∈S(s)

λs′ [xis′(ws′ + ViPs′) + a−is′(zs′ + ViPs′)]

r +
∑

s′∈S(s)

λs′(xis′ + a−is′)

1.4 Common Transfer Policies

We permit general transfer policies P , but four classes will be of special
relevance: laissez faire, patents, neutral prizes, and information-constrained
policies. Laissez faire gives inventors the immediate social payoff of their
invention, but permits all firms to equally build on that invention.

Definition 2. The transfer policy PLF is laissez faire if inventing firms
receive the full immediate social payoff of their invention, i.e. w(s, s′) =

7Forcing the continuation value to be identical for inventing and noninventing firms is
without loss of generality since w and z are unrestricted.
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π(s, s′), and if noninventing firms receive no immediate transfer following an
invention but are equally able to build on today’s invention (z(s, s′) = 0).8

We model patents as a tractable reduced form of a licensing game. Let
parameter γ ∈ [0, 1] indicates what fraction of the total continuation value
following any invention non-inventors have to cumulatively pay to the inven-
tor.9 If γ = 1, patents are so strong that the inventor of s′ is immediately
granted the entire discounted surplus generated by their invention including
surplus from any invention which builds on it in the future. If γ = 0, patents
are equivalent to laissez faire.

Definition 3. The transfer policy Pγ involves patents if inventing firms
receive transfers w(s, s′) = π(s, s′) + (N − 1)γViPγs′ and noninventors pay
(receive a negative transfer) z(s, s′) = −γViPγs′, for γ ∈ [0, 1].

Prizes and contests are another common innovation inducement scheme.
Let a neutral prize q in state s be a lump sum awarded to the inventor of any
project s′ ∈ S(s), in addition to the immediate payoff πs′ and continuation
value ViPs′ . Many real-world prizes share this structure, where any invention
achieving a given technological threshold is rewarded with a constant prize.
For example, the Netflix contest awarded $1M to the firm that “substantially
improves the accuracy of predictions about how much someone is going to
enjoy a movie based on their movie preferences.” If q is interpreted more
broadly as a form of utility for an inventor, then it may also represent credit in
the Mertonian sense; merely passing a technological threshold, regardless of
economic significance, is the cutoff upon which scientific credit is distributed.

Definition 4. The transfer policy Pq involves neutral prizes in state s if
the first firm to successfully invent any invention in state s receives transfers
w(s, s′) = π(s, s′) + q and noninventors receive transfer z(s, s′) = 0.

Patents, neutral prizes and laissez faire are all policies which do not con-
dition transfers w(s, s′) and z(s, s′) on off-equilibrium-path parameters: the

8The assumption that firms earn the full social surplus under laissez faire from each
invention is not critical for our results. Under the laissez faire policy, since π enters the firm
value function linearly, a straightforward induction argument shows that if all immediate
firm payoffs π are scaled by σ > 0, the firm problem is unchanged. Only the relative values
of immediate payoffs affect the choice of direction.

9Specifying patent payments in this way allows us to retain the earlier assumption that,
following these side payments, all firms receive equal continuation values.
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transfer following the invention s′ does not depend on the parameters of
projects ` 6= s′ ∈ S(s). In this sense, these policies all lie in a class we
call information-constrained, meaning any policy where transfers following
an invention do not condition on the parameters of inventions which are not
invented in equilibrium. An example of a policy which is not information-
constrained is an NIH funding panel, which explicitly takes into account
the value and challenge of alternative projects when choosing which projects
should receive funding.

Definition 5. A transfer policy P is information-constrained if transfers
w(s, s′) and z(s, s′) do not condition on the parameters of inventions ` 6= s′.

2 Planner Optimum and Firm Equilibrium

The planner and firm problems both involve choosing vectors of effort across
an arbitrarily large number of projects. In principle, then, comparing the
efficiency of the optimal and equilibrium allocations involves comparing the
welfare induced by two arbitrary vectors describing aggregate effort in every
state. Worse, neither the planner maximand nor firm equilibrium have an-
alytically tractable first order conditions, hence a mathematical workaround
is required to make non-numerical statements about efficient and inefficient
directional policy.

Although the objective function for the planner and the firms is non-
linear in the research allocation, both problems are linear fractionals with
linear inequality constraints. The Charnes-Cooper transformation (Charnes
and Cooper (1962)) converts programs of this type into analytically tractable
linear programs. These linear programs have corner solutions, where full
effort is optimally exerted on a single project at a single time, and the corner
solutions can be stated in terms of the maxima of simple indices. The problem
of directional efficiency is therefore tractable. In any state, the planner will
direct all researchers to work on a single project, and knowing which project
is optimal simply involves checking which invention maximizes a particular
index derived from the linear program solution. A firm equilibrium may
involve firms all working on the same project or on different projects, but
critically the existence of a socially optimal firm equilibrium requires only
knowing whether there exists an equilibrium where all firms exert full effort
on the planner’s preferred project. This can again be checked using a similar
simple index.
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Define r̃ = Nr+M(N−1)λs′ , which corresponds to a virtual discount rate
for competing firms, and denote by Θ the expected discounted continuation
value for firm i when firm i does not exert any effort until the next invention
is completed by some firm:

Θ =

∑
s′∈S a−is′λs′(zs′ + ViPs′)

r +
∑

s′∈S(s) a−is′λs′
.

Denote the immediate payoff plus the continuation value as PiPs′ = ws′+ViPs′
for an inventing firm i under policy P and Pps′ = πs′ + Vps′ for the planner.
We refer to λs′πs′ as the flow immediate social payoff, λs′Vps′ as the flow
social continuation value, λs′Pps′ as the flow total social payoff, and the time
between any two inventions as a “period.”

Proposition 1. In state s ∈ Ω:

1. The planner optimum puts all research effort toward states s′ ∈ S(s)
which maximize the index

Mλs′

r +Mλs′
Pps′

2. The best response of firm i given rival effort a−i and policy P is to
distribute all of its effort among states s′ ∈ S(s) which maximize the
index

Mλs′

r̃ +Mλs′
(PiPs′ −Θ)

The firm’s best response index differs from the planner’s in three ways:
transfers to firms inclusive of continuation value may differ from the total
social payoff (Pps′ 6= PiPs′); firms maximize payoffs only marginal to the Θ
which is earned from doing nothing in the current state; and firms effectively
discount at a different rate from the planner since their research decision
today only has a partial effect on the eventual time the next invention in
society is completed, and hence the time at which all firms can begin work
on new projects (r 6= r̃).

The planner index generically has a unique maximum. It may seem sur-
prising that the planner does not mix across projects, but generating an un-
derlying reason for R&D diversity is a tricky modeling problem, frequently
misunderstood in informal discussion. The intuition that a diverse research
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agenda provides “more lottery tickets” is false in the absence of decreasing
returns to scale in the research production function, since simultaneous di-
versified research with any constant returns to scale can be replicated by
sequentially exploring projects, with the benefit that sequential exploration
allows a high level of effort to be exerted first on projects which are believed
to be more valuable. It can be shown in a variant of our main model that un-
certainty about parameter values, switching costs, asymmetry across firms,
or even low levels of decreasing returns to scale do not necessarily lead a
planner to work on multiple projects at a time.10

2.1 Efficiency of the Firm Equilibrium

The planner optimum generically involves full effort in each state on a single
invention s′. From the best response characterization in Proposition 1, we can
construct firm equilibria, calling them efficient if there exists any equilibrium
where firms allocate their research in the planner optimal way. We restrict to
Markov perfect stationary equilibria throughout to rule out equilibria where
firms collude and punish each other across states.11

Definition 6. The firm equilibria in state s are efficient under policy P if
there exists a Markov perfect stationary equilibrium involving full effort from
all firms toward planner optimal s′ ∈ S(s).

In the next proposition, we characterize the trade-off faced by firm when
deviating from the efficient research path. First, define

∆(s′, `) =
M(λ` − λs′)
r +Mλs′

=

1

r +Mλs′
− 1

r +Mλ`
1

r +Mλ`

which measures the relative difference of the value of $1 forever with discount
rates indexed by λs′ and λ`.

Proposition 2. Let the current state be s.

10See Online Appendices B and C for details.
11The Online Appendix discusses the existence, multiplicity, and potential asymmetry

of firm equilibria.
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1. Project s′ is planner optimal if and only if, for all ` ∈ S(s)

λs′Ps′ ≥ λ`P` − λs′Ps′∆(s′, `)

2. Project s′ is a firm equilibrium if and only if, for all ` ∈ S(s)

λs′Ps′ ≥ λ`P` − λs′Ps′∆(s′, `) +D1(s′, `) +D2(s′, `) +D3(s′, `),

where

D1(s′, `) = λs′(Pps′ − (ws′ + ViPs′))− λ`(Pp` − (w` + ViP`))

D2(s′, `) =

(
N − 1

N

)
∆(s′, `)λs′Pps′

D3(s′, `) =
1

N
∆(s′, `)λs′(Pps′ − (ws′ + (N − 1)zs′ +NViPs′))

The first part of Proposition 2 simply restates the planner optimum in
Proposition 1 in terms of discounted flow payoffs. The second part of Propo-
sition 2 fully decomposes the source of inefficiency in the firm equilibrium
into three parts.

D1(s′, `), the underappropriation distortion, is positive when a firm devi-
ating from project s′ to project ` receives a higher portion of the total social
value of the invention. D2(s′, `), the racing distortion, captures the incentive
to deviate toward easier projects because firms do not account for how their
effort affects the probability other firms succeed with alternative projects in
a given period of time. D3(s′, `), the industry payoff distortion, is zero when
the total payoff to all firms under policy P is equal to the total social payoff
of each invention. When that condition does not hold, the racing externality
is either minimized or exacerbated.12 If s′ is the planner optimum, any policy
P such that D1(s′, `) +D2(s′, `) +D3(s′, `) ≤ 0, for all ` ∈ S(s), implements
the efficient direction.

The decomposition in Proposition 2 is perhaps surprising. Research by
firms affects what projects other firms can work on tomorrow, when these fu-
ture projects become available, the probability a given firm actually invents
the project it is currently working on, and so on, and yet any innovation
policy can generate inefficiency in only three ways: either firms are overin-
centivized to race toward projects easier than the planner preferred ones; or

12Recall that ∆(s′, `) > 0 when invention ` is easier than s′.
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inventing firms do not appropriate a sufficiently large share of the surplus
their inventions generate; or researching firms overall receive a different share
of the social surplus of invention depending on which research lines are pur-
sued. These are the fundamental ways competition in the resaerch sector can
generate directional efficiency, as they can exist even when the total aggre-
gate amount of research is fixed at the (unmodeled) socially optimal level,
and even though our model deliberately shuts down any distortions which
lead to inefficiency with a single private firm.13

Consider, for example, the laissez faire policy, which generates transfers
to the inventor w(s, s′) = π(s, s′) and to noninventors z(s, s′) = 0. If the
firm equilibrium in all future states is efficient, then by induction the firm

continuation value under laissez faire is ViPs′ =
Vps′

N
; each firm collects, in

expectation, an equal share of the social continuation value. In this case,
D3 = 0 because total industry transfers are exactly the total social payoff.
Since inventors only receive a 1

N
share of the social continuation value, and

firms are overincentivized to work on relatively easy projects, the underap-
propriation distortion D1 and racing distortion D2 distort behavior.

Corollary 1. When firms research efficiently in all future states, under the
laissez faire innovation policy PLF :

D1(s′, `) =

(
N − 1

N

)
(λs′Vs′−λ`V`), D2(s′, `) =

(
N − 1

N

)
λs′∆(s′, `)Pps′ , D3(s′, `) = 0

The firm equilibrium condition in Proposition 2 collapses to:

λs′Ps′ ≥ λ`P` − λs′Ps′∆(s′, `) + (N − 1)(λ`π` − λs′πs′).

Corollary 1 says that under laissez faire, firms are incentivized to deviate
toward projects with high immediate flow payoffs λπ. These projects may
be easier than the planner optimum (λ` > λs′), or have a higher immediate
payoff (π` > πs′), or both. The magnitude of the distortion is increasing
in N , and hence Proposition 3 shows that sufficient fragmentation of the
research sector guarantees inefficiency unless the planner optimal project in
a given state has higher flow immediate payoff than any potential deviation.

Proposition 3. Let the firm equilibrium in future states be efficient.

13It is trivial to note that when N = 1, invention is always directionally efficient, as a
single private sector firm in our model will behave identically to a social planner.
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1. If planner-optimal s′ is not a laissez faire equilibrium when there are
N̄ firms, s′ is still not an equilibrium for any N ≥ N̄ .

2. If the planner optimal invention does not maximize λs̄πs̄,∀s̄ ∈ S(s),
then there exists a level N∗ of fragmentation in the research sector
such that if N ≥ N∗, the laissez faire firm equilibrium is inefficient.

Not every type of invention graph leads to laissez faire inefficiency. In
the Online Appendix, we prove that directional inefficiency requires both the
existence of multiple research targets in some states, and some form of state
dependence linking invention today to inventive opportunities tomorrow. If
there are multiple research targets, but invention today does not change the
social value or simplicity of the remaining targets, the laissez faire equilib-
rium is efficient. Since there is no benefit in continuation value from avoiding
projects with high flow immediate payoff, and the future is discounted, the
planner will work first on projects with maximal λπ, hence by Corollary 1
the firms will not deviate. However, once a single element of state depen-
dence is introduced - for example, an invention which requires a precursor,
or an invention which is made easier by complementary inventions, or an
invention whose value is reduced once a substitute exists - the laissez faire
firm equilibrium is no longer efficient in general.

3 General Policy Solutions to Directional In-

efficiency

In the previous section, we saw that laissez faire is not directionally efficient.
In this section, we show that prize contests, and patents of various strengths,
also do not induce efficient equilibria, that patents, prizes and laissez faire can
each be more efficient than the others, and that any efficient invention graph
must either condition on off-equilibrium-path parameters of the invention
graph or reward noninventors as highly as inventors. That is, information-
constrained policies, whose transfers are simple functions of on-equilibrium-
path observables, are insufficient when it comes to directional efficiency.

3.1 Neutral Prizes

Recall that the neutral prize policy Pq awards a lump sum q to the inventor
of any project s′ ∈ S(s)
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Corollary 2. In state s, under neutral prize policy Pq, total distortions are

D∗NP (s′, `) = D∗LF (s′, `) +
∆(s′, `)

N
qr̃

where D∗LF (s′, `) is the equilibrium distortion in Proposition 2 under laissez
faire.

Neutral prizes of any size do not guarantee efficiency, and indeed can
generate an inefficient outcome even when laissez faire is efficient. Note
that neutral prizes still generate the underappropriation distortion of laissez
faire, since firms only collect a portion of the social continuation value of
their inventions. In addition, since ∆(s′, `) > 0 only for projects ` that
are easier than the planner optimal project s′, neutral prizes exacerbate the
racing distortion toward projects that are easier than the planner optimum.
Intuitively, a fixed prize q increases the payoff, in percentage terms, of low-
value projects more than high-value projects. Therefore, prizes can only
make firms more likely to work on lower-value yet easier projects than the
laissez faire equilibrium, as they race to finish inventions which are easy yet
just sufficient to garner the prize.

In practice, then, large prizes will cause firms to race toward inventions
which can be completed more quickly because the incentive from winning
the prize overwhelms the incentive of developing a potentially more difficult
technology that is easier for the inventor to build on in the future. If q
represents the value to an inventor of Mertonian credit for a breakthrough,
the exact same distortion arises. However, if the prize designer believes that
firms are working on inefficiently hard projects because the inventor of those
projects can capture a large share of the total value of a research line—e.g.,
projects that can be kept secret—then prizes may be effective in reducing that
type of directional inefficiency. These directional distortions must be traded
off against whatever increase in effort, unmodeled here, a prize designer hopes
to generate toward research in a given technological area.

3.2 Patents

Patents are thought to play an important role when sequential innovation
is critical, since patent rights limit double marginalization when inventions
build on each other (Green and Scotchmer (1995)). When multiple research
lines can be pursued, however, patents can distort ex-ante incentives even
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when they ameliorate ex-post double marginalization problems. The grant
of a broad patent which covers substitutes and downstream inventions can
cause a race among upstream inventors to develop relatively easy yet socially
inefficient early-stage inventions in order to obtain this broad patent.

Recall that under the patent policy Pγ, inventors receive transfers w(s, s′) =
π(s, s′) + (N − 1)γViPs′ and noninventors pay z(s, s′) = −γViPs′ , where γ ∈
[0, 1] represents the fraction of the continuation value following a patented
invention which is collected by the initial inventor.

Corollary 3. Under patent policy Pγ, distortions are

D∗Pγ (s
′, `) = D∗LF (s′, `) + γ(N − 1)(λ`VPγ` − λs′ViPγs′) + V(γ),

where

V(γ) = (1 + ∆(s′, `))λs′(ViPLF s′ − ViPγs′)− λ`(ViPLF ` − ViPγ`)

Suppose that invention in all future states is efficient (ViPLF s = ViPγs =
Vps
N
,∀s), hence V(γ) = 0. In this case, patents of maximal strength γ = 1

exactly cancel out the laissez faire underappropriation distortion D1(s′, `), as
might be expected. Patents, however, do not affect the laissez faire racing
distortion D3(s′, s̄). If the underappropriation distortion under laissez faire
is helping counteract the racing distortion—e.g., if firms are not deviating
toward an inefficient easy project under laissez faire because they would only
capture a small portion of the total social value of that invention—then in-
creasing the strength of patents can actually make directional inefficiency
worse. In practical terms, with strong patents, firms may avoid hard inven-
tions with large payoffs because racing to invent something easier gives them
a claim over the value of future discoveries, including some substitutes which
may have been potential research targets from the start.

An immediate implication of the previous two corollaries is that there
exist invention graphs for which patents of various strengths, neutral prizes,
and laissez-faire each dominate the others in terms of social welfare. We give
numerical examples in Online Appendix B.

3.3 Directional Efficiency With Information Constrained
Policy

Patents and prizes both condition on very little information: the incentives
they provide to firms depend only on the parameters of on-equilibrium-path
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inventions, and hence can operate “automatically.” Both policies were shown
to have difficulty simultaneously limiting racing behavior while still causing
firms to care sufficiently much about the social continuation value their re-
search generates. This finding raises the question: does there exist any policy
which can generate directional inefficiency without conditioning on the pa-
rameters of off-path inventions?

Recall from Definition 5, in section 1.3, that a policy is information-
constrained if transfers do not condition on the parameters of inventions
which are not ever invented in equilibrium. We show in Proposition 4 that
any information-constrained policy which is always efficient must reward in-
venting firms at least as much as non-inventing firms. That is to say, if
inventors are to be rewarded more than non-inventors, the dual nature of
directional distortions, coming both from racing behavior and underappro-
priation, cannot be wholly corrected by any information-constrained policy.

Proposition 4. Let transfer policy P be information-constrained.

1. If the payoff of inventors and non-inventors can be equalized, the information-
constrained policy w(s, s′) = z(s, s′) = απ(s, s′),∀α ≥ 0 implements
efficiency on any invention graph.

2. If the payoff (inclusive of continuation value) for inventors must be
strictly higher than that of non-inventors, then there exists no information-
constrained policy which is efficient for all invention graphs.

The first part of Proposition 4 is trivial: since we have shut down all
nondirectional distortions in our model, if the payoff to inventors and non-
inventors is identical, there is no benefit for any firm from taking any action
that lowers the cumulative payoff to all firms. If the cumulative payoff to all
firms is maximized along the efficient path, then direction will not be dis-
torted in equilibrium.14 For many reasons aside from directional efficiency,
however, we may wish to rule out policies that reward inventors and non-
inventors equally, the most obvious one being that getting the total rate of
effort to the optimal level may require rewarding inventors in some way.

The second part of the Proposition 4 shows that any efficient policy which
gives larger rewards to inventors than non-inventors must condition on the

14Other efficient policies like “paying firms only if they invent along the socially optimal
research line” require the mechanism to condition on the full vector of simplicities in order
to compute the optimal direction.
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parameters of off-equilibrium-path inventions. Therefore, the result should
be read as an impossibility result concerning uniform, non-targeted policies,
which condition on ex-post public features of an invention to generate correct
directional incentives, rather than as an implementation result in the formal
sense of the term in mechanism design.

The intuition of Proposition 4, as can be seen in the formal proof, is
as follows. Consider any invention graph with states where the planner is
indifferent between two inventions, and where the indifference may result be-
cause an invention s′ is harder or easier than an alternative `. Since w > z
by assumption, if the relative total transfer to inventors of two inventions
is equal to the relative total social payoffs, so that there is no underappro-
priation, then firms will race toward easier inventions. An arbitrarily small
change in the simplicity or payoff of the off-equilibrium-path invention will
make the planner optimum unique, and hence the proposed transfer policy
will be inefficient. On the other hand, whether transfers should be biased
toward s′ or ` depends on which one is easier and inducing racing as a re-
sult, a comparative question that necessarily depends on the simplicity of the
off-equilibrium-path invention. This result does not require any unusual in-
vention parameters or interactions: all that is required is for the planner to be
potentially unsure in some states whether the racing and underappropriation
distortion is dominant.15

Empirically, many common innovation policies are information-constrained,
and hence the inefficiency result in Part 2 binds. Governments appear to de-
sire “neutral policies” since they impose less cost in terms of information
gathering and less scope for political considerations to factor into the reward
system for inventors. Whatever the reason, our result suggests that avoiding
targeted policies has a cost in terms of efficiency. Note that our definition of
“information-constrained” allows more planner information than is usually
assumed when justifying policies like patents, since we permit conditioning

15The reader may wonder whether certain types of invention graphs are efficient under
laissez faire or under a particular policy: that is, is the inefficiency result driven by “weird”
invention graphs, or is directional inefficiency a generic property? It is trivial to construct
classes of invention graphs where simple policies generate efficiency. For example, if in
every state there is one invention that is both easier and more immediately lucrative than
any other, laissez faire will be efficient. However, both the nature of the inefficiency proof,
and results proved in the Online Appendix, suggest to us that directional inefficiency
occurs broadly. In particular, a single element of state dependence, where the nature of
inventive opportunity tomorrow depends on what is invented (or not invented) today, is
sufficient to construct graphs where laissez faire policy is inefficient.
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policy on the full social value, including continuation value, of all inventions
when setting transfers.

4 Applications and Implications

Though our primary results are theoretical, the model is general enough to
apply to a broad set of policy problems, of which we consider four. First,
competition among innovators can cause firms to work on projects that are
either more radical or more incremental than those preferred by the social
planner. Second, patent pools or research joint ventures can play a role in
reducing directional distortion in addition to their role in limiting holdup
which is well-known in the existing literature. Third, when trade expansions
enlarge the size of the market, the endogenous entry of additional firms will
distort directional incentives. Fourth, the breadth of “pioneer patents”, often
determined ex-post in the courts, ought to account for the potential of ex-
ante distortion.

4.1 Incremental Steps versus Large Steps

Proposition 5 shows that, perhaps counterintuitively, firms in competitive
equilibrium may work on inventions that are either too incremental or too
radical.

Proposition 5. Let an invention graph contain an incremental line with two
sequential inventions 1 and 3, and a radical invention with a single invention
2. Assume that the radical project is harder than either of the incremental
steps (λ2 > max{λ1, λ3}), that the radical invention payoff exceeds the total
payoff of the incremental line (π2 > π1 +π3), and that once either the radical
invention or the incremental line have been invented, the value of the other
line falls to zero.

1. If the planner is indifferent between the incremental line and the radical
line then the incremental line (radical line) is a laissez faire equilibrium
if and only if λ1π1 ≥ λ2π2 (λ2π2 ≥ λ1π1).

2. There is an open set of parameters where the radical (incremental) line
is strictly preferred by the planner yet the radical (incremental) line is
not a laissez faire equilibrium.
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When λ1π1 ≥ λ2π2, the racing distortion is stronger than the underap-
propriation distortion: competitive pressure to finish some project quickly
pushes firms off the difficult radical invention 2, leading them to work on
incremental project 1 even though they will only capture a fraction of the
value of the follow-on invention 3. On the other hand, if λ2π2 ≥ λ1π1, the
underappropriation externality is stronger: firms work on the radical inven-
tion because although the incremental first step is easy, inventing firms must
in expectation share the continuation value generated once 3 is eventually
invented. Note also from Corollary 3 that under patents of maximal strength
γ = 1, only racing behavior distorts the firm equilibrium. Therefore, contrary
to intuition, innovation will be excessively incremental in technological areas
where patents are de facto effective in allowing originating firms to accrue
most of the rents from follow-on innovation.

Essentially, if rivals are trying to invent a very difficult, very valuable new
invention, a firm can instead shift to a less valuable substitute research line
where the initial steps are not that challenging. Since the initial steps are
not that hard, it is likely the firm will get the patent before its rivals make
the radical discovery, and hence even though the incremental line offers a less
valuable industry, it offers the firm a high probability of holding an industry-
controlling patent. The usual intuition that patents are necessary for radical
invention is based on the idea that, in the absence of patents, firms will not
capture enough of the social value ex-post of their invention to justify a large
research investment. A directional model, on the other hand, clarifies that
strong patents also encourage inefficient ex-ante racing for critical patents
which may very well be incremental in nature.

4.2 Patent Pools

Patent pools and research joint venture cross-licensing agreements, made
in advance of R&D investments, are common in many industries and their
potential welfare-enhancing role in solving hold-up problems is well-known
(Lerner and Tirole (2004), Denicolo (2002)). Our main result suggests an
alternative welfare-enhancing role for patent pools: reducing directional dis-
tortion. The socially optimal inventions in an industry like semiconductors
might reasonably be known better by private sector firms than the planner,
or for political economy reasons the planner may not want to be seen dif-
ferentially incentivizing specific inventions. Firms would prefer to commit
to innovating only along the optimal research line, but as we have shown,
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research on these inventions is not generally a laissez faire equilibrium, hence
such a commitment must be binding if the firms are to avoid deviating.

Patent pools serve this commitment role. From Proposition 4, if the
payoff to inventing firms and non-inventing firms is identical, then there is
no directional inefficiency. A pool that involves the R&D intensive firms
in an industry committing to share revenue from the stream of inventions
that follow will generate first-best directional efficiency even if there is no
ability to commit to precisely which type of innovation will be funded by
each firm, and even if the pool organizer does not know which inventions lie
along the planner-optimal research line. We completely abstract away from
deadweight loss generated either in the product market or in the technol-
ogy licensing market, and so answering questions about the exact welfare
implication of patent pools is beyond the bounds of our model as currently
constructed. That said, the role of patent pools, research joint ventures
and standard setting in generating an efficient industry research portfolio
appears understudied: organizations like SEMATECH (Irwin and Klenow
(1996)) rather explicitly set the goal of coordinating industry research on
particular research lines, rather than just hoping to reduce licensing frictions
ex-post, or free riding ex-ante.

4.3 Trade Expansion and the Direction of Innovation

Trade is often considered a net positive for innovation, both because it ex-
pands the size of the markets, and because it assists in the diffusion of knowl-
edge (e.g., Bloom, Draca and van Reenen (2015)). However, trade can be
problematic if it distorts the direction of innovation. Consider a version of
our base model where the number of firms is endogenous, retaining the as-
sumption that the total measure of science in society M is fixed.16 Firms are
assumed to pay a fixed cost F at time 0 to enter, and no entry or exit occurs
after that date. If entry decisions are made simultaneously, then the number
of firms is the largest integer such that ViP(s0, N) ≥ F . That is, firms enter
as long as their expected discounted profits exceed the fixed cost.

Assume that an expansion of trade increases the immediate social payoff
π to all inventions by a constant factor ζ. From Proposition 1 and Footnote
8, we know that holding the number of firms N constant, neither the planner

16For example, an expansion in North-South trade may expand the potential product
market without changing the size of the research sector.
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optimal projects nor the firm equilibria change. However, the value of the
invention graph for each firm increases to ζViP(s0, N), which is equivalent to
a reduction in the entry cost to F

ζ
when calculating the number of firms who

enter in the long-run equilibrium. Thus, an expansion of trade implies that
the equilibrium number of firms also increases.

The following proposition shows that a large expansion in the size of the
market, caused by trade, eventually causes so much entry in the R&D space
that it distorts the direction of invention away from the planner optimum.

Proposition 6. Assume that prior to an expansion of trade, when ζ = 1,
the direction of invention is efficient. Suppose there exists s ∈ Ω such that
the planner optimal project is s′ ∈ S(s) and λs′πs′ < λs̄πs̄ for some s̄ ∈ S(s).
Then, there exists an expansion of trade ζ̄ > 1 such that the direction of
invention is inefficient.

That an increase in the size of the product market can cause an increase
in the number of producing firms under constant returns to scale is intuitive.
The idea that increased competition among R&D performing firms following
a decrease in trade barriers can force firms to switch their research toward
projects which are either more immediately lucrative or quicker to complete
is a complaint that has been made by industry participants. For instance,
Zheng and Kammen (2014) show that solar R&D spending fell following the
rapid entry of Chinese firms into the photovoltaic industry after 2010, and
firms both inside and outside of China decreased investment particularly in
more fundamental research programs.

4.4 Pioneer patents

Patents considered pioneering in a technological field are often granted wide
breadth ex-post by the courts (Love (2012)).17 Granting broad patent protec-
tion to technologically significant inventions which pioneer a valuable field,
when those inventions were first but not necessarily best, inefficiently distorts
ex-ante incentives in infant industries, as firms race to garner the industry-
controlling patent. For example, the famous Wright Brothers ‘393 patent cov-

17As Merges and Nelson (1990) note, the scope of a patent is determined to a large extent
ex-post. This subjective evaluation allows judges to condition the breadth, and hence
value, of patents on information including the social value and difficulty of substitutes for
the invention in question. As Proposition 4 showed, it is precisely this type of non-neutral
payment to inventors that is required to align directional incentives.
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ers airplanes which maintain lateral control with aileron flaps, even though
the Wright invention itself uses a simpler technology called wing warping
which was rarely seen thereafter. Corollary 3 shows that the distortionary
effects of patents are particularly strong when there are multiple potential
inventions with much higher social continuation value than immediate payoff,
precisely the situation where broad pioneer patents are often seen.

When a judge is considering how broadly to interpret a patent for a
pioneer technology, the question ought not be whether a particular invention
made possible a valuable field, but rather whether alternative, potentially-
infringing, yet easier-to-improve technologies were feasible research targets
at the time the supposed pioneer technology was created. Though it may
often be difficult to assess whether a potentially infringing technology could
feasibly have been invented at the time the pioneer technology came about,
this does not strike us as a qualitatively more difficult problem than the
existing legal question, assessing whether a pioneer technology was, in fact,
the technological linchpin in the industry that followed.

5 Conclusion

We provide three novel contributions in the paper.
First, we construct a tractable dynamic model of the direction of innova-

tion, with an arbitrary number of inventions where the value and difficulty
to invent each can vary arbitrarily depending on what other inventions have
already been discovered. We show that it is possible to transform the planner
and firm problems into linear programs, allowing us to characterize their max-
imand as a simple index which can be tractably analyzed. Many economic
situation involve agents choosing actions that affect an exponential hazard
rate, generating linear functional maximands, hence transforming these max-
imands to a linear program and working directly with the index functions as
in Proposition 2 may prove to be a useful technique in other contexts.

Second, we show that firms allocate their scientists inefficiently in equi-
librium due to the contribution in a directional context of both an underap-
propriation and a racing distortion; these distortions are analogous to well-
known distortions in models of the rate of innovation. Neither patents nor
prizes fully ameliorate these distortions, and hence neither class of policy can
generically generate optimal direction. Indeed, patents and prizes can both
make directional distortion worse than laissez faire.
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Third, there is a fundamental limit to decentralized “autopilot” innova-
tion policy when it comes to directional incentives. Any innovation policy
which both rewards inventors and conditions inventor incentives only on ex-
post observable parameters like the difficulty or social value of realized in-
ventions is incapable of always generating directional efficiency. This is quite
different from models of the rate of invention, where a planner need not
know everything firms know about a technological area to induce efficiency.
For instance, in sequential invention models, laissez faire is inefficient due
to underappropriation of the value early inventors grant to those who will
build on that invention. A patent causes firms to internalize those positive
spillovers, but the planner need not know exactly how large the spillovers will
be ex-ante for the patent system to work. On the contrary, directional inef-
ficiency is caused by the interaction of two distortions, and precisely which
distortion is dominant and hence must be counteracted by policy depends on
the nature of potential inventions a firm could have worked on. The planner
needs both to correct distortions and to know which type of distortion needs
correcting. Ex post observation of the equilibrium path is not sufficient to
solve the latter problem.

We make a number of assumptions to permit the cleanest possible under-
standing of the fundamental mechanisms of directional distortion. Loosening
these assumptions, in the Online Appendix we show that our qualitative re-
sults hold when firms are no longer symmetric, when the hazard rate of
invention is nonlinear, and when some of the benefits of invention spill over
to rival firms. In order to maintain symmetry across firms in our main model,
we do not permit firms to keep inventions secret, for firms to apply learning
from unsuccessful research to future inventions, or for firms to license patents
except in the most reduced form manner. These restrictions provide analytic
tractability for a model powerful enough to investigate general policies while
remaining stylized enough to clearly separate the unique distortions intro-
duced by direction choice. A model of innovation direction which permits
other distortions already examined in the theoretical literature, as may be
required for empirical models of the severity of directional distortion and its
harm on welfare, is a particularly productive extension.
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6 Online Appendix A: Proofs

Proofs are presented here in the order the propositions and corollaries appear
in the main text. Corollary 1 and Proposition 3 involve straightforward
algebraic manipulation of earlier results, so they are omitted below.

6.1 Preliminaries: Charnes-Cooper transformation

A linear fractional program is defined as

max
cT · x + α

dT · x + β
subject to Ax ≤ b, x ≥ 0.

Using the Charnes-Cooper transformation, a linear fractional program can be
transformed into an equivalent linear program (Charnes and Cooper (1962)),
by defining the auxiliary variables y = 1

dTx+β
x, t = 1

dTx+β
. Then, the

original problem is equivalent to

max cT · y + αt subject to Ay ≤ bt and dTy + βt = 1, y ≥ 0, t ≥ 0.

6.2 Proof of Proposition 1

6.2.1 Part 1: Planner Optimum

1. It is easy to show that there exists a symmetric solution to the planner’s
problem (even with a weakly concave rate hazard rate h(x)).18

2. Charnes-Cooper transformation. Let cs′ = λ(s, s′)[π(s, s′) + Vp(s
′)],

ds′ = λ(s, s′), α = 0, β = r, A = [1, ...., 1]T , and b = M . The original
planner problem can be transformed into the equivalent optimization
program

max
{y(s,s′)}s′∈S(s)

∑
s′∈S(s)

λ(s, s′)[π(s, s′) + Vp(s
′)]y(s, s′)

subject to
∑

s′∈S(s)

y(s, s′) ≤Mt,
∑

s′∈S(s)

λ(s, s′)y(s, s′) + rt = 1, y(s, s′) ≥

0, and t ≥ 0. Notice that in our case t ≥ 0 is redundant. Solv-

ing for t, defining u(s, s′) =
λ(s, s′)[π(s, s′) + Vp(s

′)]

1 + M
r
λ(s, s′)

and v(s, s′) =

18If {(xi(s′))s′∈S(s)}Ni=1 is a solution, x(s, s′) = h−1
(

1
N

∑N
i=1 h(xi(s, s

′))
)

is a symmetric

solution.
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y(s, s′)
(
1 + M

r
λ(s, s′)

)
we can rewrite the above problem as

max
{v(s,s′)}s′∈S(s)

∑
s′∈S(s)

u(s, s′)v(s, s′) subject to
∑

s′∈S(s)

v(s, s′) ≤ M

r
.

Define T (s) = arg max
s̃∈S(s)

u(s, s̃). The solution to the above maximization

is given by
∑

s′∈T (s)

v(s, s′) = M
r

and v(s, s′) = 0, for s′ 6∈ T (s). In terms

of the original variables we have the solution:∑
s′∈T (s)

x(s, s′) = M, x(s, s′) = 0, s′ 6∈ T (s).

6.2.2 Part 2: Firm Best Response

Using the Charnes-Cooper transformation, we identify cs′ = λ(s, s′)[w(s, s′)+
VPs′ ], ds′ = λ(s, s′), α =

∑
s′∈S(s) x−i(s, s

′)ds′(z(s, s′) + VPs′), β = r +∑
s′∈S(s) x−i(s, s

′)ds′ , A = [1, ...., 1]T , and b = M
N

. Similar to Part 1, the
problem is

max
∑
s′

(βcs′ − αds′) y(s′) subject to
∑
s′

(
A+

b

β
ds′

)
y(s′) ≤ b

β
.

Define T (s) = arg max
s̃∈S(s)

c(s̃)− α
β
d(s̃)

1 + b
β
d(s̃)

. Analogous to the previous proposition,

the solution is to allocate all the effort on states in T (s). The solution of the
original problem is:∑

s′∈T (s)

xi(s, s
′) =

M

N
, xi(s, s

′) = 0 otherwise.

6.3 Proof of Proposition 2

6.3.1 Part 1: The Planner Optimum with ∆

The condition for the planner optimum is:

λs′

r +Mλs′
Pps′ ≥

λ`
r +Mλ`

Pp`,∀` ∈ S(s)

λs′Pps′
r +Mλ`
r +Mλs′

≥ λ`Pp`

λs′Pps′ ≥ λ`Pp` − λs′Pps′∆(s′, `)
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6.3.2 Part 2: The Firm Equilibrium with ∆

The planner-optimal s′ is an equilibrium if for all ` ∈ S(s)

λs′

r̃ +Mλs′
P̄fs′ ≥

λ`
r̃ +Mλ`

P̄f`

where P̄f` = w` + VP` − Θ. Rearranging terms, as in the first part of this
proposition, we obtain

λs′P̄fs′ ≥ λ`P̄f` − λs′P̄fs′∆(s′, `) + (N − 1)(λ`P̄f` − λs′P̄fs′)

which is equivalent to

λs′Pps′ ≥ λ`Pp` − λs′Pps′∆(s′, `) + (N − 1)(λ`P̄f` − λs′P̄fs′) + Λ2(s′, `),

where Λ2(s′, `) = λs′(Pps′ − P̄fs′) − λ`(Pp` − P̄f`) − λs′∆(s′, `)(P̄fs′ − Pps′).
This is also equivalent to

λs′Pps′ ≥ λ`Pp` − λs′Pps′∆(s′, `) + Λ3(s′, `),

where Λ3(s′, `) = λs′(Pps′−NP̄fs′)−λ`(Pp`−NP̄f`)−λs′∆(s′, `)(P̄fs′−Pps′).
Using the definition of ∆(s′, `), and Θ we can show that this is equivalent to

λs′Pps′ ≥ λ`Pp` − λs′Pps′∆(s′, `) + Λ4(s′, `),

where Λ4(s′, `) = λs′(Pps′−N(ws′+VPs′))−λ`(Pp`−N(w`+VP`))−λs′∆(s′, `)(ws′+
NVPs′ −Pps′ + (N − 1)zs′). Notice that if we had added NPp rather than Pp
and divide by N , we obtain the condition:

λs′Pps′ ≥ λ`Pp` − λs′Pps′∆(s′, `) +D1(s′, `) +D3(s′, `) +D2(s′, `),

This expression can be written as three terms:

D1(s′, `) = λs′(Pps′ − (ws′ + VPs′))− λ`(Pp` − (w` + VP`))

D2(s′, `) =

(
N − 1

N

)
λs′∆(s′, `)Pps′

D3(s′, `) =
1

N
λs′∆(s′, `)(Pps′ − (ws′ + (N − 1)zs′ +NVPs′))
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6.4 Proof of Corollary 2 and 3

Let D∗LF (s′, `) = D1(s′, `) +D2(s′, `) +D3(s′, `), the distortion under laissez
faire. Straightforward algebra applied to Proposition 2 shows that a prize

q changes D∗LF (s′, `) by adding the term q(λ` − λs′ − λs′∆(s′,`)
N

). Using the

definition of ∆, this term is equal to q∆(s′,`)r̃
N

.
Likewise, distortions under the policy Pγ can be calculated directly by

plugging the patent transfers w and z into Proposition 2.

6.5 Proof of Proposition 4: Information-Constrained
Efficiency

With arbitrary transfers it is always possible to implement the efficient so-
lution with transfers that depend only on on-path parameters. For any
` ∈ S(s), set w` = z` = π`. Because our invention graph is finite, every
research line eventually reaches a state s̄ where S(ŝ) = ∅,∀ŝ ∈ S(s̄). For any
invention in S(s̄), then, the future is trivially efficient under any policy. If
the future is efficient, then ViPs′ = VPs′

Applying induction, if the future is efficient, then under transfers w(s, s′) =
π(s, s′) and z(s, s′) = π(s, s′), w(s, s′) + ViPs′ = z(s, s′) + ViPs′ = Pps′ . From
Proposition 2, we get that D1(s′, `) = 0 and D2(s′`) = −D3(s′`). That is,
there is no distortion in the firm choice, hence there is an efficient equilibrium.

To show part 2, let the planner be indifferent between two inventions s′

and `. By Proposition 2,

λs′Ps′(1 + ∆(s′, `)) = λ`P` (1)

and
λ`P`(1 + ∆(`, s′)) = λs′Ps′ (2)

Let the firm choose transfers w and z without conditioning those transfers on
off-equilibrium-path parameters. That is, ws′ and zs′ cannot condition on λ`
or π`, and likewise for w` and z`. By the assumption that inventors are paid
at least as much as non-inventors, let ws′ − zs′ = εs′ > 0. Let fs = ws + ViPs
be the total transfer to inventing firms inclusive of continuation value.

Again using Proposition 2 and rearranging terms, we have that s′ is a
firm equilibrium if

λs′fs′(1 + ∆(s′, `)) ≥ λ`f` +
N − 1

N
λs′∆(s′, `)εs′ (3)
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and ` is an equilibrium if

λ`f`(1 + ∆(`, s′)) ≥ λs′fs′ +
N − 1

N
λ`∆(`, s′)ε` (4)

From equations 3 and 1 we get:

fs′

f`
≥ Ps′

P`
+

(
N − 1

N

)
λs′Ps′

λ`P`f`
∆(s′, `)εs′ (5)

From equations 4 and 2 we get:

f`
fs′
≥ P`
Ps′

+

(
N − 1

N

)
λ`P`

λ`Ps′fs′
∆(`, s′)ε` (6)

We have two cases:

1. Suppose
fs′
f`
≤ Ps′

P`
. If ∆(s′, `) > 0, then equation 5 implies

fs′
f`
>

Ps′
P`

,
and therefore s′ cannot be a firm equilibrium.

2. Suppose
fs′
f`
≥ Ps′

P`
. If ∆(`, s′) > 0, then equation 6 implies

fs′
f`
<

Ps′
P`

,
and therefore ` cannot be a firm equilibrium.

Note that by construction ∆(s′, `) and ∆(`, s′) have opposite signs, and
their signs depend on the simplicity of both ` and s′. In words, the plan-
ner needs to provide a higher relative transfer to the more difficult project
in order to stop racing behavior when w < z. However, by assumption
firms cannot condition transfers on the parameters of off-path inventions,
and hence cannot condition on the sign of ∆.

By continuity, we can drop the assumption that the planner is indifferent
and instead give the planner an arbitrarily small strict preference η for one
invention or the other, and proceed with the proof as above (since εs′ and
∆(s′, `) are fixed, when we take η → 0 we get the same result). Hence, for
any information-constrained payoff functions such that ws′ > zs′ , a set of
inventions can be chosen so the firm equilibrium is inefficient.

6.6 Proposition 5: Radical vs Incremental Steps

Let there be two potential research lines: A radical line with a single relatively
difficult invention (invention 2), and an incremental line with two sequential
inventions (inventions 1 and 3, where 3 cannot be worked on unless 1 has
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been invented). Invention 2 and 3 are perfect substitutes: if invention 2 is
discovered before 3, π3 = 0, and vice versa. We also assume that the difficulty
of each research line is such that the planner is indifferent between working
on either line. The planner indifference condition in the initial state is:(

Mλ1

r +Mλ1

)(
π1 +

Mλ3π3

r +Mλ3

)
=

Mλ2π2

r +Mλ2

. (7)

When condition 7, and the given assumptions λ1 > λ2, λ3 > λ2, and
π2 ≥ π3 hold, it can be shown using the firm equilibrium condition that once
invention 1 is invented, all firms working on invention 3 is an equilibrium.
Thus, the continuation value after invention 1 is Vi1 = Mλ3

r+Mλ3
. By Corollary

1, all firms working on invention 1 is a firm equilibrium if

λ1P1 ≥ λ2P2 − λ1P1∆(1, 2) + (N − 1)(λ2π2 − λ1π1).

In this case, P1 = π1 + Mλ3π3
r+Mλ3

and P2 = π2. Using the equality from the
planner’s indifference condition, we can replace the value of P1 and obtain
the equivalent condition

(1 + ∆(1, 2))
Mλ2π2(r + λ1)

r +Mλ2

≥ λ2π2 + (N − 1)(λ2π2 − λ1π1).

Finally, using the definition of ∆(1, 2), the condition is equivalent to:

λ1π1 ≥ λ2π2.

Analogously we show that all firms working on 2 is an equilibrium when
λ2π2 ≥ λ1π1. Part 2 follows immediately from that result and local continuity
of the firm best response condition.

6.7 Proposition 6: Trade Expansion and Endogenous
Firm Entry

By assumption, without the trade expansion there is an equilibrium number
of firms N̄ such that the firm equilibrium is efficient. A market expansion,
caused by trade, is equivalent to a reduction in the entry cost, with the
number of firms rising to ∞ and entry costs falling to zero. Let s ∈ Ω such
that λs′πs′ < λ`π`, where s′ is the efficient solution. By Proposition 3, as N
increases firms will deviate from s′, since D2 and D3 are bounded.
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7 Online Appendix B: Extensions of the Base-

line Model

In this appendix, we show that adding decreasing or increasing returns to
scale to our model does not change the underlying source of firm inefficiency,
that decreasing returns to scale make inefficiency in the firm equilibrium
more likely, that there is no inefficiency when the parameters of inventive
opportunities tomorrow do not depend on which inventions are discovered
today, that a single element of state dependence in conjunction with multiple
research lines generates inefficiency, and that permitting both short-lived and
infinite-lived research firms exacerbates the racing distortion.

7.1 Planner Problem with Nonlinear Hazard Rates

First, consider alternative assumptions about returns to scale. Let the hazard
rate on invention k for firm i be λkh(xk), where h is twice-differentiable,
h′ > 0, h(0) = 0 and, without loss of generality, h( 1

N
) = 1

N
. Under decreasing

returns to scale, h′′ < 0, and under increasing returns, h′′ > 0. Note that,
in the results presented in the body of this paper, constant returns to scale
under the above assumptions simply means that h(x) = x. To simplify
notation, throughout this section we assume that there is no inefficiency in
future states.

In section 6.2.1 in Appendix A, we showed that independence of hazard
rates across firms means the planner optimizes with symmetric effort across
firms. Without loss of generality, we assume M = 1, so the planner solves

max∑
s′∈S(s)

xs′≤
1
N
, xs′≥0,∀s′∈S(s)

∑
s′ λs′Ps′Nh(xs′)

r +
∑

s′ λs′Nh(xs′)

The KKT necessary condition imply that exist µs′ ≥ 0 such that µs′xs′ = 0
and γ such that

∂f(x)

∂xs′
= γ − µs′ .

A corner solution, where all effort goes to k ∈ S(s), that is xk = 1
N

and
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x` = 0 for ` 6= k is characterized by

λkPkh
′(xk)(rN +

∑
s′ λs′h(xs′))− λkh′(xk)(

∑
s′ λs′Ps′h(xs′))

(rN +
∑

s′ λs′h(xs′))2
≥

λ`P`h
′(x`)(rN +

∑
s′ λs′h(xs′))− λ`h′(x`)(

∑
s′ λs′Ps′h(xs′))

(rN +
∑

s′ λs′h(xs′))2

where rN = r
N

. Using that h(0) = 0, this simplifies to

λkPkh
′(xk)(rN + λkh(xk))− λkh′(xk)λkPkh(xk) ≥

λ`P`h
′(0)(rN + λkh(xk))− λ`h′(0)λkPkh(xk)

Let C =
h′( 1

N
)

h′(0)
. Note that under decreasing returns to scale, C ∈ (0, 1). Thus,

we can write

λkPkC(rN + λkh(xk))− λkCλkPkh(xk) ≥ λ`P`(rN + λkh(xk))− λ`λkPkh(xk)

Using that h(xk) = 1
N

and rearranging terms, and defining ∆C(k, `) =
λ` − Cλk
r + λk

, we get

λkPkC ≥ λ`P` −∆C(k, `)λkPk.

Notice that this condition is equivalent to the planner’s condition in Propo-
sition 2. Similar derivation for an arbitrary number of scientists M , defining

C(M) =
h′(M

N
)

h′(0)
, gives the same result.

The only caveat is that KKT are only necessary and not sufficient condi-
tions. However, we show that when h(x) = x the only solution is the corner
solution xk and in that case the condition above holds (C = 1). Thus, if in-
equality holds strictly for C = 1, it still holds for C close to 1, in which case
we have full effort toward a single invention even with nonconstant returns
to scale. Thus, even with small levels of decreasing or increasing returns to
scale, the planner corner solution is retained.

7.2 Firm Problem with Nonlinear Hazard Rates

Under the assumption that parameters are such that the planner works on
a single invention under decreasing returns to scale, we now show that the
firms deviate for almost exactly the same reason as under constant returns.
Indeed, decreasing returns to scale make it more likely that firms will deviate
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because minor deviations to new research lines will generate a higher relative
hazard rate under decreasing returns than under constant returns, hence
exacerbate the racing distortion.

Suppose that all rivals are exerting efforts towards invention k. Recall
the firm problem, if all other firms exert full effort towards invention k, is

max∑
s′∈S(s) xs′≤

1
N
,xs′≥0,∀s′∈S

∑
s′ λs′Pfs′h(xs′) + Ak
r̃ +

∑
s′ λs′h(xs′)

where Ak = (N − 1)λkh( 1
N

)Vfk, and r̃ = r + (N − 1)λkh( 1
N

)
As in Section 7.1, the first order necessary condition for positive effort on

invention k and no effort on any other invention is

λkPfkh
′(xk)(r̃ + λkh(xk))− λkh′(xk)(λkPfkh(xk) + Ak)

(r̃ + λkh(xk))2
≥

λ`Pf`h
′(x`)(r̃ + λkh(xk))− λ`h′(x`)(λkPfkh(xk) + Ak)

(r̃ + λkh(xk))2

This simplifies to

λkPfkh
′(xk)(r̃ + λkh(xk))− λkh′(xk)(λkPfkh(xk) + Ak) ≥

λ`Pf`h
′(x`)(r̃ + λkh(xk))− λ`h′(x`)(λkPfkh(xk) + Ak)

Retaining the assumptions that h( 1
N

) = 1
N

and C =
h′( 1

N
)

h′(0)
, after simple

algebra we get

λkPfkC ≥ λ`Pf` +
1

N
∆C(k, `)λkPfk −

1

N
∆C(k, `)(N − 1)λkVfk

Adding and subtracting terms, we get

λkPkC ≥ λ`P` −∆C(k, `)λkPk +D∗

where

D∗ = λ`(Pf`−P`)−λkC(Pfk−Pk)+
1

N
∆C(k, `)λk(Pk−(Pfk+(N−1)Vfk))+

N − 1

N
∆C(k, `)λkPk

This distortion are analogous to the distortions in Proposition 2, with

DC
1 (k, `) = λ`(Pf` − P`)− λkC(Pfk − Pk)

DC
2 (k, `) =

N − 1

N
∆C(k, `)λkPk

DC
3 (k, `) =

1

N
∆C(k, `)λk(Pk − (Pfk + (N − 1)Vfk))
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Thus, adding small amounts of increasing or decreasing returns to scale does
not change our main qualitative results.

7.3 Graphs Without State Dependence Have an Effi-
cient Equilibrium

The decomposition in Proposition 2 allows a simple categorization of the
nature of inefficiency generated by a particular policy in a particular type
of invention graph. Inefficiency under laissez faire does not result from the
simple existence of multiple projects. Rather, in order to generate laissez faire
inefficiency, a necessary though not sufficient condition is that one firm’s
actions today must affect the existence of future research targets, or their
value, or the difficulty of inventing them. This can be seen with the following
simple cases.

First, let there be a set of research targets which are technologically in-
dependent.

Definition 7. An invention graph involves technologically independent in-
ventions if, in every state, the set of research targets S(s) includes every
invention in S(s0) which has yet to be invented, and the payoff π and sim-
plicity λ of each undiscovered invention never change.

With technological independence, no matter what is invented today, the
options available to inventors tomorrow, and the simplicity and payoff of
those inventions, does not change; there is nothing resembling a set of re-
search lines, where invention today affects the nature of inventive opportu-
nity tomorrow. As a result, Proposition 7 shows that on the technologically
independent graph, laissez faire firm activity is efficient.

Proposition 7. In an invention graph with technologically independent in-
ventions, the planner optimally works on inventions in decreasing order of
their immediate flow social payoff λs′πs′. Further, there exists an efficient
laissez faire firm equilibrium.

Proof. We prove by induction. Let there be two remaining inventions. If
invention i is discovered first, the expected discounted continuation value for
the planner is Vp(i) = λ−i

r+λ−i
π−i. By Proposition 1, the planner works on

invention i that node maximizes the index

λi
r +Mλi

[πi + Vi]
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Define pi = λi
r+Mλi

. The planner discovers 1 first and 2 second if and only if(
p1

1− p1

)
π1 ≥

(
p2

1− p2

)
π2.

Using the definition of pi, that inequality simplifies to

λ1π1 ≥ λ2π2.

Now we prove the inductive step. Without loss of generality let λ1π1 ≥
λ2π2 ≥ ... ≥ λKπK . Define pi = λi

r+λi
and notice that pi

1−pi = λi
r

.
We know the result holds for K = 2. Assume the result is true for any

set of K − 1 inventions (Induction Hypothesis). Let’s prove the result for
K inventions. We need to show that starting from 1 is better than starting
from any other invention k. By the characterization result, we start from 1
instead of k iff:

p1(π1 + Vp(1)) ≥ pk(πk + Vp(k)), for all k.

Since after one invention there are K−1 left, using the induction hypoth-
esis we know that the planner discovers in decreasing order of λπ. Hence,

Vp(1) =
K∑
m=2

(
m∏
j=2

pj

)
πm and Vp(k) =

k−1∑
m=1

(
m∏
j=1

pj

)
πm+

K∑
m=k+1

(
m∏

j=1, j 6=k

pj

)
πm.

Thus, the condition is equivalent to

K∑
m=1

(
m∏
j=1

pj

)
πm ≥ pkπk+pk

k−1∑
m=1

(
m∏
j=1

pj

)
πm+

K∑
m=k+1

(
m∏
j=1

pj

)
πm, for all k.

Notice that the terms from k + 1 to K cancel out. This is because the
expected time at which we reach invention k+ 1 is the same if we start from
1 or from k. Thus, we get

k∑
m=1

(
m∏
j=1

pj

)
πm ≥ pkπk + pk

k−1∑
m=1

(
m∏
j=1

pj

)
πm.

which is equivalent to

k−1∑
m=1

(
m∏
j=1

pj

)
πm(1− pk) ≥ pkπk

(
1−

(
k−1∏
j=1

pj

))
.
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Thus, the planner start from invention 1 if and only if

k−1∑
m=1

λmπm

(∏m−1
j=1 pj

)
(1− pm)(

1−
(∏k−1

j=1 pj

)) ≥ λkπk, for all k.

This always holds when the inventions are ordered by λπ, since the left
hand side of the inequality is a convex combination of {λmπm}k−1

m=1, since the
coefficients

am =

(∏m−1
j=1 pj

)
(1− pm)(

1−
(∏k−1

j=1 pj

))
satisfy that am ≥ 0 and

∑k−1
m=1 am = 1. The firm equilibrium then follows

immediately: since the future is by induction efficient, by Proposition 2 the
firms never deviate when the planner is working on the project with highest
flow immediate payoff.

7.4 State Dependent Invention Graphs Generate Inef-
ficiency

Adding an element of state dependence, where invention today affects what
can be worked on tomorrow, to the mere existence of multiple projects is
enough to induce inefficiency under laissez faire. Consider a case where all
inventions are available in the initial state, but there is no continuation value:
once anything has been invented, the immediate social payoff of every other
potential invention falls to zero.

Definition 8. An invention graph involves perfect substitutes if all inven-
tions are available in s0 and any discovery reduces the immediate social payoff
of all other inventions to π = 0.19

With the social continuation value equal to zero, and inventing firms paid
exactly the immediate social payoff of their invention, laissez faire on the per-
fect substitutes invention graph generates distortions D1(s′, `) = D3(s′, `) =

19Our model takes the immediate social payoff of an invention as the reduced form value
from an unmodeled demand system. As such, we are in a sense abusing the term “perfect
substitutes,” but the manner in which the term is used here - two inventions are perfect
substitutes if the marginal value of each is zero once the other has been invented - should
nonetheless be clear.
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0, leaving only the racing distortion D3. Therefore, under perfect substi-
tutes, firms only deviate toward projects which are easier than the planner
optimum.

Proposition 8. Under the laissez faire policy PLF on the perfect substitutes
invention graph, s′ is planner optimal if ∀` ∈ S(s)

λs′πs′ ≥ λ`π` − λs′πs′∆(s′, `),

and s′ is a firm equilibrium under laissez faire if and only if

λs′πs′ ≥ λ`π` − λs′πs′∆(s′, `) +

(
N − 1

N

)
λs′πs′∆(s′, `)︸ ︷︷ ︸

D2(s′,`)

.

The proof of Proposition 8 is straightforward algebra, hence is omitted.
The technologically independent inventions example shows that equilib-

rium direction choice is efficient, when all inventions are available from the
beginning and there is not state dependency. The perfect substitutes exam-
ple shows that simple forms of state contingency can generate inefficiency in
the equilibrium direction. This case is a particular form of state dependency
in parameter values, changing the immediate payoff π. We now show that
another type of state contingency, availability of inventions only after other
inventions, can also generate laissez faire directional inefficiencies.

Consider three inventions. Inventions 1 and 2 are available from the
beginning. However, invention 3 becomes available only after 1 is invented.
Figure 4a shows the inventions and Figure 4b the states representation.

Proposition 9. Consider the invention graph in Figure 4. Then:

1. If λ3π3 ≤ max{λ1π1, λ2π2}, then the planner always works on the avail-
able invention with largest flow payoff λπ. By Proposition 2 this can be
implemented as a firm equilibrium.

2. If λ3π3 > max{λ1π1, λ2π2}, then the planner opens a path (works on
invention 1 first) iff

λ1π1 ≥ λ2π2 +

(
λ1

r + λ3

)
[λ2π2 − λ3π3].
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1
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(a) Possible Inventions
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{1} {2}

{1, 3} {1, 2}

{1, 2, 3}

(b) Graph of states.

Figure 4: Invention 3 is only available once 1 is invented.

Applying the firm equilibrium condition, the planner solution can be
implemented as an equilibrium iff

λ1π1 ≥ λ2π2 +
r

r + (N − 1)(r + λ1)

(
λ1

r + λ3

)
[λ2π2 − λ3π3].

Proposition 9 says that the planner may work on invention 1 even when
λ1π1 < λ2π2 as long as doing so makes available a third invention with even
higher expected flow payoff and the future is not discounted too heavily. We
prove this by examining all six permutations of flow immediate payoff across
the inventions.

Proof. In the cases:

λ1π1 ≥ λ2π2 ≥ λ3π3, λ1π1 ≥ λ3π3 ≥ λ2π2, λ2π2 ≥ λ1π1 ≥ λ3π3,

the solution (for both planner and firms) is to discover in decreasing order
of λiπi, since the graph does not impose any binding constraints. This can
be shown directly with Proposition 2.

Consider the following cases:

• Case (a): λ3π3 ≥ λ1π1 ≥ λ2π2.
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• Case (b): λ3π3 ≥ λ2π2 ≥ λ1π1.

• Case (c): λ2π2 ≥ λ3π3 ≥ λ1π1.

In these cases, the planner optimum may involve working on 1 first in
order to “open up” valuable invention 3. In case c, by Proposition 4, we
know the planner works on 2 before 3 conditional on inventing 1. The planner
would invent 1 before 2 if and only if

p1π1 + p1p2π2 + p1p2p3π3 ≥ p2π2 + p1p2π1 + p1p2p3π3,

Algebraic manipulation shows this condition is equivalent to λ1π1 ≥ λ2π2.
Therefore, the planner will always work on the project with the highest
available flow profit and therefore we can implement the planner solution
as a laissez faire equilibrium.

Consider now cases (a) and (b). By Proposition 4, we know the planner
will work on 3 → 2 after discovering 1. Therefore, the planner will first
invent 1 if and only if

p1π1 + p1p3π3 + p1p2p3π2 ≥ p2π2 + p1p2π1 + p1p2p3π3,

Moving terms around and multiplying the expression by r
(1−p1)(1−p2)

= (r+λ1)(r+λ2)
r

we get

λ1π1 ≥ λ2π2 +

(
λ1

r + λ3

)
[λ2π2 − λ3π3]

Now, using the result about equilibrium implementation of the planner solu-
tion we get the statement in the proposition.

7.5 Spillovers

In the main results, under laissez faire, inventing firms collect the entire
immediate social payoff of their invention, and non-inventing firms collect
zero. Consider a policy where only a fraction α of the immediate social
payoff is collected by inventors, with the remaining surplus accruing to all
other firms, shared equally.

Definition 9. Let a spillover policy Pα provide inventors transfers w(s, s′) =
π(s, s′)(1 − (N − 1)α) and noninventors z(s, s′) = απ(s, s′), Assume that
α ≤ 1

N
, meaning inventors receiveweakly more than non-inventors.
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From proposition 2, it is easy to see that the distortions can be written
as

Dα(s, s′) = DLF (s, s′)−(N−1)α(λ`π`−λs′πs′)+V(α) = (1−α)DLF (s, s′)+V(α)

where V(α) is the distortion from the difference between the social continu-
ation value under laissez faire policy and spillover policy Pα. Thus, letting
non-inventors get a share of the immediate payoff weakens the directional
distortion caused by the laissez faire policy.

7.6 Short Run vs Long Run Firm Equilibrium

In the main results, we look only at homogenous, infinitely-lived firms with
perfect information about parameter values. Much of the intuition in those
results can be generalized. In this subsection, let there be one long run
innovator who plays until everything is discovered, and a sequence of short
run innovators who play only one period each. Short run players may be
R&D firms who only have the technological ability to work on exactly the
present set of invention opportunities; they hence put no weight on the social
value created when their inventions open up future opportunities for other
firms.

Consider an invention graph with two technologically independent inven-
tions. Let the total number of scientists M = 1, with the long run and
the short run firm both having 1

2
scientist. Since the number of scientists

is constant, just as in the case of technologically independent inventions the
planner works first on 1 rather than 2 if and only if λ1π1 ≥ λ2π2.

The long run firm has the same best response as in the technologically
independent inventions case since the identity of the rivals is irrelevant. The
short run innovator at any stage has the best response:

s′ ∈ arg max
s̃∈S(s)

λs̃πs̃
N(r +

∑
z∈S(s) a−izλz) + λs̃

The continuation values for the long run player are

V (1) =
λ2π2

2r + 2λ2

and

V (2) =
λ1π1

2r + 2λ1
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Suppose the long run firm initially works on invention 1. The short run
firm, when both inventions are available, works on invention 1 if and only if:

λ1π1 ≥ λ2π2 +
λ2π2(λ1 − λ2)

2r + λ1 + λ2

⇔ λ1π1

λ2π2

≥ 1 + ∆1.

Suppose the long run innovator initially works on 2. The short run innovator
when both inventions are available works on 1 if and only if:

λ1π1 ≥ λ2π2 +
λ2π2(λ1 − λ2)

2r + 2λ2

⇔ λ1π1

λ2π2

≥ 1 + ∆2,

where ∆2 > ∆1 as long as λ1 6= λ2.
Therefore, when λ1 = λ2, there is no inefficiency. When λ1 < λ2,

• If λ1π1
λ2π2
≥ 1: Both long and short run firms working on 1 is an equilib-

rium (and it is efficient).

• If λ1π1
λ2π2
≤ 1+∆1: Both working on 2 is an equilibrium (and it is efficient)

• When 1 + ∆1 ≤ λ1π1
λ2π2
≤ 1, the short run and long run firm working on

1 is not an equilibrium. In this case, the equilibrium is asymmetric,
hence inefficient.

Analogous conditions hold if λ1 > λ2.
The equilibrium is depicted in the following figure, where ∆2 is negative

and ∆1 is positive.

Figure 5: Equilibrium project choice with sequence of short run firms and
a long run firm

Short Run:

Long Run:

Case (1) : λ1 < λ2

1 + ∆2

2

2

1

1

2

λ1π1

λ2π2

1

1

1

2

2

1 + ∆1

2

1

Case (2) : λ1 > λ2

1

1

λ1π1

λ2π2

It may seem counterintuitive that short run players deviate to the harder
project. The short run player puts no value on being able to work on a second
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project after the first invention is completed. When the long run player works
on the easy project first, a deviation by a short run player to the hard project
delays the total expected time until both projects are completed. Since the
short run player receives no continuation value, he completely ignores the
harm of delaying the completion of both projects. Note how extreme this
effect is: short run firms can work on a project in equilibrium even when it
has a strictly lower flow immediate payoff than the social optimum.

7.7 Laissez faire, patents and neutral prizes cannot be
ranked

Laissez faire PLF , patents of various strengths Pγ, and neutral prizes of
various sizes Pq can each be preferred (in terms of efficiency) to the others
depending on the nature of the parameter space. In other words, if the
planner has only PLF ,Pγ and Pq available as policy tools, and the planner’s
prior about the value of parameters is a correct point estimate, then the
following cases show that there exist inventions graphs where each policy is
preferred to the others.

Consider the following invention graph. Let the number of scientists
M = 1, the number of firms N = 2 and the discount rate r = 1. In each of
the following examples, the planner optimally works first on 1 then A1.

Figure 6: Ranking laissez faire, patents and prizes

s0

{1} {2}

{A1} {A2}

(λ1, π1) (λ2, π2)

(λA1, πA1) (λA2, πA2)

Case 1: (λ1, π1) = (1, 1), (λ2, π2) = (2, 2), (λA1, πA1) = (1, 16), (λA2, πA2) =
(1, 9). In this case, the laissez faire equilibrium is inefficient, and the equi-
librium remains inefficient under patents of any strength or neutral prizes of
any size.
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Case 2: (λ1, π1) = (1, 1), (λ2, π2) = (2, 2), (λA1, πA1) = (1, 6), (λA2, πA2) =
(1, 2). In this case, the laissez faire equilibrium is inefficient, as is the equi-
librium with any size prize, but the equilibrium with maximal patents is
efficient.

Case 3: (λ1, π1) = (3, 1), (λ2, π2) = (1, 8), (λA1, πA1) = (1, 12), (λA2, πA2) =
(1, 10). In this case, the laissez faire equilibrium is inefficient, but efficiency
is generated under sufficiently strong prizes or patents.

Case 4: (λ1, π1) = (1, 2), (λ2, π2) = (2, 1), (λA1, πA1) = (1, 14), (λA2, πA2) =
(1, 10). In this case, the laissez faire equilibrium is efficient, as is the equilib-
rium when prizes are small, but the equilibrium is inefficient under maximal
patents or sufficiently large prizes.

Case 5: (λ1, π1) = (1, 2), (λ2, π2) = (2, 1), (λA1, πA1) = (1, 16), (λA2, πA2) =
(1, 10). In this case, the laissez faire equilibrium is efficient, and the equilib-
rium remains efficient under patents of any strength, but inefficiency arises
as prizes grow sufficiently large.

Therefore, without knowing ex-ante what the parameter space will look
like in a technological area, it is impossible to rank laissez faire, patents and
neutral prizes in terms of their effectiveness at reducing directional ineffi-
ciency.
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8 Online Appendix C: Existence of Equilib-

ria, Mixed Equilibria and Multiplicity of

Equilibria

In this appendix, we prove the existence of an equilibrium in our main model,
and show the possibility of open sets of parameters with mixing equilibria,
asymmetric equilibria and multiple equilibria. Note that since the planner
optimum generically involves full effort on a unique invention, the existence
of these alternative equilibria do not in any way change our efficiency results.
For simplicity, we show all examples using laissez faire firm transfers.

8.1 Equilibrium Existence

Consider first the problem of existence. Since the invention graph is finite, we
can use best responses to compute equilibria by backward induction. Con-
sider the stage game and take the continuation values Vi(s) as given. To
prove equilibrium existence, we use the following result: a symmetric game
whose strategy set S is a nonempty, convex, and compact subset of some
Euclidean space, and whose utility functions u(si, s1, . . . , sN), continuous in
(s1, . . . , sN) and quasiconcave in si, has a symmetric pure-strategy equilib-
rium.20

Consider a formulation where the strategy space for each firm is the sim-
plex ∆|S|. A firm’s payoff, taking rival effort ai as given, can be written
as

u(xi, x−i) =

∑
s′∈S αs′xs′ +B(x−i,s′ , Vis′)∑
s′∈S βs′xs′ + C(x−i,s′ , r)

.

We have continuous and quasiconcave payoffs in own strategy. Therefore
there exists a symmetric pure equilibrium in the game. Uniqueness of the
equilibrium is not guaranteed.

8.2 Mixing Equilibria

We say firms are mixing when they spread their scientists across multiple
projects at a given time. By the usual mixed strategy condition, firms exert

20See, for example, Becker and Damianov (2006).
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effort toward two different inventions only when these two inventions deliver
the same payoff.

Let fs = ws + VPs. From the proof of Proposition 2, it is easy to see that
a firm is indifferent between two states s′ and ` iff

N(λs′fs′ − λ`f`) = λs′fs′
(Mλs′ −Mλ`)

r +Mλs′
(Mix).

Obviously, when λs′ = λ` and fs′ = f` condition (Mix) holds, because the
inventions s′ and ` are identical in terms of payoffs and simplicities.

Proposition 10. Suppose inventions s′ and ` are not identical. Condition
(Mix) does not hold, i.e. there will be no mixing between s′ and ` if

1. (fs′ − f`)(λs′ − λ`) ≥ 0,

2. (λs′ − λ`)(λs′fs′ − λ`f`) < 0,

Proof. 1. Consider the first part of the proposition.

(a) When λs′ = λ` condition (Mix) reduces to fs′ = f`. Therefore, if
the inventions are not identical, there will be no mixing between
s′ and `.

(b) When fs′ = f` and λs′ 6= λ` condition (Mix) reduces to N =
Mλs′
r+Mλs′

. Since N > 1 >
Mλs′
r+Mλs′

, this condition does not hold.

(c) Condition (Mix) can be written as

N

(
1− λ`f`

λs′fs′

)
=

(
1− λ`

λs′

)
Mλs′

r + λs′

If fs′ > f` and λs′ > λ`, then since N > 1, Mλs′

r+λs′
< 1, λ`f` < λs′fs′

and λ` < λs′ , then condition (Mix) cannot hold. Otherwise,(
1− λ`f`

λs′fs′

)
< N

(
1− λ`f`

λs′fs′

)
=

(
1− λ`f`

λs′fs′

)
<

(
1− λ`

λs′

)
implying fs′ < f`, which is a contradiction. Similarly, if fs′ < f`
and λs′ < λ` we reach a contradiction.

2. In this case, the lhs of condition (Mix) is non positive and the rhs is
strictly positive, and vice-versa.
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This proposition states that firms will never mix between states s′ and `
if their simplicities are equal but one has higher payoff, or if their payoffs are
the same but one is easier to discover than the other, or if one is easier and
has higher payoff.

If one invention is easier and a second has a higher payoff inclusive of
continuation value, then if firms best respond by mixing between the two,
the flow payoff of the easier invention must be strictly higher than the flow
payoff of the high payoff invention. In Figure 7, the gray area show inventions
(λs′ , Pf (s

′)) that will never mix with the (λs̄, Pf (s̄)). This is all to say, large
classes of invention graphs have no mixing equilibria.

Figure 7: Regions where simplicities and payoffs where firms will never mix
with (λs̄, Pf (s̄))

No mix

No mix

Pf (s̄)

λ
s̄

However, mixing equilibria can exist. It is easiest to see what causes them
if we focus on states with no continuation value; in those cases, opponent
actions only affect a firm through their cumulative discounted hazard rate,
reflected in r̃ = Nr+N

∑
z∈S(s) aiz. Let r̃min correspond to all rivals exerting

effort towards the hardest invention and r̃max the corresponding rate when all
rivals work on the easiest invention. For any mixture we have r̃ ∈ [r̃min, r̃max].

A firm is indifferent between working on inventions k and ` iff

λkπk
r̃ + λk

=
λ`π`
r̃ + λ`

(MC)

Therefore if λkλ`(π`−πk)
λkπk−λ`π`

∈ [r̃min, r̃max] there exists an (inefficient) symmetric
mixing equilibrium. For example, if λk = 4, πk = 8, λ` = 5, , π` = 7, r =
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1, N = 2 and M = 1, then all firms exerting 1/3 of the effort in k and 2/3 in
` is a symmetric mixing equilibrium. By continuity, there is an open set of
parameters values with these equilibria.

8.3 Asymmetric Equilibria

We can also construct an asymmetric equilibrium where firms are mixing.
Let there be three inventions, and let r̃1 and r̃2 be the solutions to

λkπk
r̃1 + λk

=
λ`π`
r̃1 + λ`

and
λkπk
r̃2 + λk

=
λjπj
r̃2 + λj

.

Let firm 1 mix between k and ` and firm 2 mix between k and j, accordingly.
In this case, we also need to verify that firm 1 does not want to put effort
towards j and firm 2 towards `. For example, let λk = 6, πk = 3, λ` = 12, π` =
2, λj = 2, πj = 6, r = 1, N = 2 and M = 1. Here, firm 1 mixing between
k and ` exerting 1/2 of the effort in k, and firm 2 mixing between k and j
exerting 1/3 of the effort in j is an equilibrium.

8.4 Multiple Equilibria

There further exist small sets of parameters for which there exist multiple
equilibria.

Proposition 11. Consider only two inventions that are perfect substitutes.
If λk 6= λ`, then there is a region of parameters (πk, π`) where there is multi-
plicity of equilibria with firms allocating effort only towards one invention.

Proof. Let M = 1. All firms putting effort towards ` is a symmetric equilib-
rium if and only if

λ`π`
r̃` + λ`

≥ λkπk
r̃` + λk

where r̃` = rN + (N − 1)λ`.
Similarly, all firms putting effort towards k is a symmetric equilibrium iff

λkπk
r̃k + λk

≥ λ`π`
r̃k + λ`
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Combining the equations we obtain the inequalities, we obtain that both
equilibria exist if and only if(

λ`
λk

)
r̃k + λk
r̃k + λ`︸ ︷︷ ︸
Lf

≤ πk
π`
≤
(
λ`
λk

)
r̃` + λk
r̃` + λ`︸ ︷︷ ︸
Uf

Notice that Uf − Lf = λ`
λk

(λk − λ`)2. Also, we cannot have both Uf > 1 and
Lf < 1.

The planner chooses invention k iff

πk
π`
≥ λ`
λk

(
r + λk
r + λ`

)
︸ ︷︷ ︸

Lp

.

Figure 8: Multiplicity of equilibria on perfect substitutes graph

0 0Lp

Case (1) : λ` > λk

Lf Uf πk
π`

Lf Uf

Case (2) : λ` < λk

Lp πk
π`

If the ratio πk
π`

is smaller than Lp (Lf ), the planner (firm) works on in-

vention `. If the ratio πk
π`

is larger than Lp (Uf ), the planner (firm) works on

invention k. There are multiple firm equilibria if the ratio πk
π`

is in (Lf , Uf ).
The multiplicity is caused by the following tradeoff. If other firms are all
working on the easy project, they are likely to make a discovery quicker than
firm i deviating to the hard project. With perfect substitutes, if firm i does
not discover first, it obtains a payoff of zero from the game. Although deviat-
ing can lead to a higher payoff conditional on succeeding first, the probability
of being first is smaller. On the other hand, if all rivals are working on the
hard project, the potential deviation is to work on an easy project with low
payoff, foregoing the higher payoff of the harder project. When the ratios of
payoffs and simplicities are structured such that Lf ≤ πk

π`
≤ Uf , it is both
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worth working on the hard project when everyone else does, and worth work-
ing on the easy project when everyone else does. As N →∞ we get Uf → Lf
and the multiplicity disappears.
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