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Class 1 Notes
These notes include three sections: first, what does Arrow think is the fundamental
problem of research; second, how do we go wrong with common qualitative intu-
itions like Schumpeter’s theory that since bigger firms can better exploit research
they will do more of it; and third, how do growthmodels with endogenous innova-
tion like Romer (1986, 1990), Grossman and Helpman’s quality ladder (1991), and
Aghion and Howitt (1992) fit in with the classical growth models? I have written
these notes such that only calculus is needed to follow the exposition, at the cost of
perhaps oversimplifying the original models. These notes are meant to be broadly
accessible.

ARRow 1962 and the fundamental pRoblems of innovation
Arrow’s “Economic Welfare and the Allocation of Resources for Invention” is al-
most entirely verbal and incredibly prescient. It is not going overboard to say that
he lays out the research agenda in the economics of innovation for the next fifty
years.

The general equilibrium “welfare theorems” say that if the production function
takes commodities and labor and outputs goods in a convex manner, among a few
other assumptions, the market equilibrium will be efficient in the Pareto sense.
This seems innocuous, but it conceals three assumptions: the production function
should be deterministic, the goods should be possible to sell in a market, and the
production transformation set should be convex (if I can produce 2 of good x using
α of good y, then I need to be able to produce at least 1 of good x using .5α of good
y).

Knowledge seems to violate all three of those assumptions. The first unit of a piece
of knowledge is costly to create and subsequent pieces of that knowledge are free
to replicate; think of a flame being passed from candle to candle costlessly once the
first candle is lit. That means I can produce 1 unit of knowledge with α resources,
2 units still only using α, 3 using only α in total, and so on. Note that spending
.5α does not mean I can produce at least half as many units of knowledge as I can
produce using α, so the production transformation set is not convex, and hence an
efficient equilibrium may not exist. Intuitively, efficiency requires that price equal
the cost of the marginal unit of knowledge consumed, which is zero. But if the
price of knowledge is zero, who will pay the fixed cost to create it?

Even if we could reward firms for the immediate social value created when their
knowledge is used, the full value of knowledge goods is not reflected in their
market price because there are significant externalities. Principally, knowledge
invented today is an input into knowledge invented tomorrow. Even under the
strongest patent systems, there is no patent strong enoug to cover ideas only in-
spired by the original invention, but the social value of the original invention surely
ought include the value of that inspiration. For reasons of individual liberty, firms
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may be unable to prevent their trained workers from leaving to new jobs.

The fact that research inputs only produce knowledge with uncertainty is also
problematic. In general, the theory of Arrow-Debreu securities says that uncer-
tainty is not a problem for economic efficiency as long as risks can be suitably
hedged: with a market allowing proper hedging of risk, “the use of inputs, includ-
ing human talents, in their most productive mode is not inhibited by unwillingness
or inability to bear risks.” But Arrow, very much ahead of his time, noted that the
uncertainty of research is partially related to the fact that we can’t observe the
effort of the researcher, and hence if there is no risk on the part of the research
- that is, if she gets a constant payout no matter whether she succeeds with her
invention today or not - then surely the researcher will shirk. The problem of how
to balance the efficiency-improving desire to shift risk away from individuals with
the incentive problem lies at the heart of much of the 1980s mechanism design
theory on organizational incentives which we will cover in depth.

Dealing with these problems is of enormous policy importance. A commentor
on Arrow’s paper notes that the military develops planes with production costs
in the billions of dollars. How ought they incentivize researching firms? How
should risks of the failure of research be shared? Should firms be compensated on
the basis of planes eventually bought, or in terms of their research costs, or with
prizes, or some other policy altogether? These questions don’t matter in most
markets - the invisible hand, as interpreted in Arrow and Debreu, suggests that
market prices provide efficient incentives in many cases. Innovation is not one of
those cases. To the extent that knowledge is a particularly important good, and
we will see in the upcoming discussion of growth that it is, then proper incentives
for knowledge creation are all the more important.

How models will help ouR intuition
Schumpeter, in his famous Capitalism, Socialism and Democracy, argued that mo-
nopolies will be better for innovation than competitive firms. His supply side
argument was that larger firms can hire more diversified R&D staff, who are more
efficient (Axiom 1), and that larger firms aremore likely to be able to use the output
of quasirandom research since they sell in more product lines (Axiom 2). Lots of
people have tested the hypothesis of whether more concentratedmarkets are more
or less innovative. But does Schumpeter’s claim even follow from the axioms?

Let F (R,N) be the dollar value of R&D output per worker, where R are research
workers and N are other workers at the firm. RF (R,N), then, is the total dollar of
value of R&D output for the firm. Axiom 1 says that average R&D productivity per
worker rises with the number of workers (dF

dR
> 0) and Axiom 2 says that average

R&D productivity per worker rises with the size of the firm outside of the research
division ( dF

dN
> 0). Schumpeter’s theorem is that total R&D output of the firm

(RF (R,N)) rises more than proportionally with the firm size ( d(RF )/RF
d(R+N)/(R+N)

> 1).
Empirical tests of Schumpeter’s hypothesis often test the related idea of whether
the number of R&D workers R rises more than R+N when R+N changes over
firms ( dR/R

d(R+N)/(R+N)
).

There are two problems. One, as pointed out by Carlos Rodriguez in the JPE in
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1979, Axiom 1 implies increasing returns to hiring R&D workers, which implies
that the marginal product of researchers exceeds the average product, which im-
plies that if the market for R&Dworkers is competitive and hence workers are paid
their marginal product, there does not exist a finite wage for researchers. For this
reason, let’s be charitable to Schumpeter and assume Axiom 3, which is implied by
Axioms 1 and 2 instead: that if the number of researchers and other workers grow
positively at the same rate, then the average R&D output per worker increases.

Here is where formalism helps. Since firms will hire research workers until their
marginal product equals their wage, big profit maximizing firms will only hire
more R&Dworkers than small ones if the marginal product of R&Dworkers (dRF

dR
)

is larger when the firm is larger. That is, the following derivative must be positive:

d

d(R +N)

dRF

dR
=

d

d(R +N)
(F +

dF

dR
R) =

dF

d(R +N)
+R

dF 2

dRd(R +N)

That is, the Schumpeterian conclusion depends on the sign of the second derivative
of the production function, not the first: economic behavior is driven by marginal
properties, not average properties. That is, the Schumpeter axioms do not imply
the conclusion being tested in so many empirical papers!

You may wonder, who cares? Don’t we just care about the empirical question
of whether monopolies do more research or not? Well, Schumpeter’s qualitative
theory suggests amechanism, and further suggests that if you find out that monop-
olies do more research, it is because they are monopolies, and not for some other
reason. Hence you would be justified in offering policy advice like “allow small
firms to merge so that they will do more research”. Since the theroetical logic is
proven to be incorrect when we write things down formally, all we can say from
an empirical result of that type is that monopolies do more research than other
firms but we have no idea whether it would be good policy to allow smaller firms
to merge.

(Beyond the theory, we will see later that it is likely not true that monopolies do
the most research. But hopefully this is enough to convince you that looking at
ideas in innovation formally can be of benefit even if you are empirically minded.)

Classic Models of GRowth
What causes economies to become rich? If you are in this class, you likely buy the
idea that innovation - new knowledge, widely diffused - is essential. If this were
not true, the topics covered in this course would be of much less interest.

This idea, that knowledge is produced by profit-maximizing firms, and that a large
knowledge base means a rich country, have proven incredibly difficult to generate
in a model. Two other stylized facts, that as population grows the growth rate
increases (the past two decades have been the fastest growth in global GDP in
human history) and that as the number of researchers grows with population we
do not see ever-increasing growth rates (U.S. productivity growth is fairly constant
despite a massive increase in the number of researchers over time) would also be
nice features for a workhorse model of growth to generate. Let’s first see how the
classic Harrod-Domar and Solow models think about growth, then see how Paul
Romer and his contemporaries’ “endogenized” growth.
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First, Harrod-Domar. Let the output of the economy Y = f(K) whereK is some
summed up value of physical capital like machines and steel. Let the economy
have constant returns to scale ( df

dK
= c for some fixed value c). Let output with

no capital be zero (f(0) = 0). And let the change in capital be the proportion of
output saved minus the capital that depreciates (K̇ = sY − δK).

The first three assumptions imply that y = cK , therefore the change in output
over time Ẏ = d(cK)

dt
= cK̇ . Combining those equations, the change in capital

over time K̇ = sy − δ Y
c
, therefore cK̇ = Y (sc − δ), therefore Ẏ = Y (sc − δ),

and the growth rate in GDP Ẏ
Y
= sc− δ. That is, if you want to grow, jack up the

savings rate. This model has no role for innovation since the state of technology
isn’t even the model, nor is there any role for human capital (which, we shall see,
is different from technology). This type of growth is sometimes called growth by
“capital deepening”. The Maoist Chinese policy of “backyard steel production”
absolutely fits an idea of a world where one grows by sacrificing consumption for
savings, limitlessly.

Solow’s famous model brings technology into the picture. Let output be

Y = f(AL,K) = Kα(AL)1−α

where A is the “state of technology”, L is the amount of labor, and K is capital.
The production function is constant returns to scale: doubling all factors doubles
output. Constant returns to scale at the level of the economy can be justified for
now under the “Kaldor fact” that labor and capital shares have been relatively
constant for a very long time (or via an argument about replicability - do you see
why?). Let labor grow exogenously at rate n ( L̇

L
= n) and let technology grow

exogenously at rate g ( Ȧ
A
= g). As in Harrod-Domar, let capital change depending

on savings and depreciation (K̇ = sY − δK), with the savings rate being an
exogenous fixed percentage of total output. More complex “neoclassical” models
of growth based on Solow would model the households maximization problem
directly, but the basic insight of the model is unchanged by that modification.

To solve this model, let output per effective unit of labor

y ≡ Y

AL
=

Kα(AL)1−α

AL
=

Kα

(AL)α
= kα

The change in capital per effective unit of labor k = K
AL

is

k̇ =
K̇

AL
− K

(AL)2
(ȦL− L̇A) =

K̇

AL
− K

(AL)
(
Ȧ

A
+

L̇

L
) = sy − k(n+ g + δ)

where the first equality is merely the quotient rule and the final equality comes
from the transition equation for capital given above. By this transition equation,
the amount of capital per effective unit of labor grows if sy > δk, shrinks if sy <
δk, and is at a “steady state”, neither shrinking nor growing, when sy = δk. When
k is constant (k̇ = 0), we have that steady state capital per effective unit of labor
k = ( s

n+g+δ
)

1
1−α . Since y is constant when k is, in the “steady state”, output per

worker Y
L
= Ay grows at the exogenous growth rate of technology g.
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That is, in the short run society can become richer via capital deepening, but in the
long run once steady state capital per effective unit of labor has been reached, only
technological growth can push the economy forward. The famous “Solow residual”
regression based on this model suggests that for countries at the technological
frontier, the overwhelming majority of growth is driven by changes in a residual
A, and not by capital or labor increases. This is often interpreted as “productivity”
or “technological advances”, but of course controlling for things like human capital
is important if that interpretation is desired.

Note the following interesting implication of Solow. If the growth rate of technol-
ogy g is higher, for every level of technology steady state capital is lower (capital
has decreasing returns to scale), and hence income per worker is lower since y
is proportional to k. That is, no sense saving so much today if we will be more
productive with what we saved tomorrow.

Solow’s model at least allows us to perform exercises like “how much growth is
due to changes in capital versus growing populations or growing technology?”
Human capital can fairly easily be added to the model as well. However, we are
at a bit of a loss trying to endogenize technology. That is, we cannot explain why
technology grows or how policy might affect the growth rate. This is unsatisfying
for students of innovation: surely the nature of how A changes is fundamental!

Question: What is the only possible growth rate in income per capita in the long run
if there is no exogenous increase in technology g?
Endogenous Models of GRowth
If we want growth to increase endogenously, then firms must have the incentive
to make costly investments in research and continue to do so without the economy
reaching a fixed point of the level of technology. A great model of endogenous
growth would also match a number of stylized facts: potential growth rates are
higher in technologically lagging countries than frontier countries, R&D is done
by incumbents and by entrants, the link between the amount of competition and
the amount of R&D is not monotonic, and so on.

The models essentially come in two classes, one dating to Alfred Marshall and
one to Edward Chamberlin. The Marshallian idea is that research has spillovers,
so constant returns to scale technology for the firm production functions have
increasing returns to scale at the aggregate level. The Chamberlin idea is that
there exist markets without perfect competition, attempts to earn rents in those
markets provide the incentive to do R&D, and that R&D lowers the cost of future
R&D allowing growth to proceed. It is easy in a partial equilibrium IO model of
perfect competition to generate incentive for investment: we will see patent race
models and the like. What turned out to be hard was writing general equilibrium
models where these incentives were neither “too strong” (with growth exploding
over time) or “too weak” (with steady state growth of zero).

Some bad news: these models aren’t trivial mathematically. To quote Paul Romer
back in 1994, “Dupuit wrote about new goodsmore than 150 years ago. Economists
are inundated with new goods in their daily lives. It is therefore somewhat puz-
zling that the potential for new goods still plays such a small role in aggregate
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economic analysis. In its discussion of the deeper implications of newness, this
paper outlines two different forces that may have tended to keep newness in the
background. The most obvious restraining force is the technical difficulty of con-
structing economy-wide mathematical models with fixed costs. The importance of
mathematical difficulty has been noted before. [See, for example, the introduction
in Krugman (1990) or the initial sections of Romer (1991).] New goods, fixed costs,
and market power are relatively easy to capture in a partial equilibrium model,
but much harder to incorporate in analysis conducted at the level of the economy
as a whole.” The technical difficulty is that ideas, being nonrival, imply increasing
returns to scale somewhere in the economy. This is Arrow’s nonconvexity prob-
lem. If all factors with constant returns to scale are paid their marginal product,
as they must be under perfect competition, there is simply no income left to pay
for the factor with increasing returns, and therefore no reason to pay for ideas.

The first successful attempt at incorporating increasing returns into a general equi-
libriummodel comes fromPaul Romer’s thesiswork (1986); Chad Jones’ 2005 chap-
ter in the Handbook of Growth gives details on earlier failed attempts. Take the
Solow model and assume that there exist a measure 1 of firms, that capital K is
the sum of capital used by all firms, that labor L is likewise, and that the state
of technology A is proportional to the amount of capital in society (A = γK);
that is, there is something like learning by doing going on. Further assume that
there is no growth rate in population (n = 0). These assumptions mean that there
is an externality when firms use capital: each firm’s capital use increases overall
knowledge in society, an effect which is not captured by the profits of individual
firms. This model, in the spirit of Marshall, generates a growth path with constant
increases in capital, production, and technological growth as long as suitable re-
strictions on the production function and depreciation rates are satisfied (I’ll save
you the differential equations…). There is a problem, however: the Romer model
has a “scale effect” where population growth generates more capital use generates
higher growth rates, counterfactually implying that growth in ever-increasing in
population, eventually reaching a growth rate of infinity (see Jones AER 1999)!
Further, the 1986 model does no explicitly model knowledge production, hence is
unable to serve as a vehicle for studying policies which change the incentives to
produce knowledge.

That said, the 1986 paper did inspire a larger endogenous growth literature which
explicitly models the incentives for private actors to produce knowledge. Three
classics are Romer’s (1990) model of intermediate product variety with market
power for the intermediate good generating quasirents, Grossman and Helpman’s
model of “quality ladders” where firms have temporary market power via im-
provements in the quality of a product, and Aghion and Howitt’s (1992) “neo-
Schumpeterian” model where invention tomorrow supersedes inventions today.

A simple version of Romer’s “lab-equipment model” is as follows. Let N(t) rep-
resent the number of “varieties” of intermediate goods available at any time, and
let aggregate production Y (t) depend on a function of those varieties plus labor,
with production being constant returns to scale in the intermediate goods and la-
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bor. Assume no population growth as in Romer’s 1986 paper. In particular, let

Y (t) =
1

1− β
X(t)1−βLβ

where, letting ϵβ ≡ 1
β
be the elasticity of substitution between various intermedi-

ate inputs, the intermediate good aggregateX(t) is such that

X(t) = [
∫ N(t)

0
x(v, t)

ϵβ−1

ϵβ dv]
ϵβ

ϵβ−1 = [
∫ N(t)

0
x(v, t)1−βdv]

1
1−β

This functional form means that increases in varieties permit more efficient pro-
duction of the intermediate aggregate.

The economy can produce consumption goods C , intermediate goods x, or re-
search Z , under the resource constraint C(t) + X(t) + Z(t) = Y (t) and the as-
sumption that all intermediate goods cost ϕ (in terms of final goods) to produce.
The economy starts with N(0) > 0 varieties, and produces varieties according
to ˙N(t) = ηZ(t); that is, if firms in aggregate spend Z(t) of the final good on
research, they will produce ηZ(t) new varieties. Production of new varieties hap-
pens with free entry, production of the final good Y is competitive, all factor mar-
kets are competitive, and the inventor of a given variety x has a perpetual patent
on that variety allowing the inventor to earn quasirents. The critical features are
twofold: invention is done purposefully by firms, and inventors earn quasirents
from their inventions.

Since the final good Y (t) is produced competitively, intermediate goods are pur-
chased given intermediate rental prices px(v, t) to maximize total production mi-
nus the summed rental price plus the wage bill:

max
x(v,t),L

1

1− β
[
∫ N(t)

0
x(v, t)1−βdv]

1
1−βLβ −

∫ N(t)

0
p(v, t)x(v, t)dv − w(t)L

The first order condition gives that x(v, t) = p
− 1

β
x L. By the usual markup rule, the

price of each variety is a markup over the cost of production ϕ such that px(v, t) =
ϕ

1−β
. Normalizing ϕ = 1− β, the price of every intermediate good is 1. Therefore,

plugging price into the demand for intermediate goods, we have x(v, t) = L, ∀v, t
and profit for each variety at each time t is π(v, t) = 1×L−ϕ×L = βL. Finally,
substituting the demand for each intermediate good into the final good production
function gives Y (t) = 1

1−β
N(t)L. Note that there are constant returns to scale from

the perspective of the final good producer (who takesN(t) as given), but increasing
returns to scale for the economy at large: doubling the number of workers and the
quantity of each intermediate good doubles final good production, but doubling
those factors plus doubling the number of varieties more than doubles final good
production.

Taking the first order condition of the final good producer again, it can similarly be
shown that the wagew(t) = β

1−β
N(t). Finally, free entry into research means that

ηV (v, t) = 1, where V is the lifetime discounted stream of profits from inventing
η new varieties at a resource cost of 1 unit of the final good.
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Can this model generate growth? If the interest rate is constant, monopolists in
each variety make a profit equal to their discounted flow profits, or V (t) = V =∑∞

n=0 βL(1 − r)n = βL
r
. Combining this with the free entry of researchers con-

dition, we have that r = ηβL. Growth in consumption, and hence growth in
overall output, is proportional to the interest rate along a balanced growth path
for many representative household utility functions: this is the idea of “Euler con-
dition”, where households are only willing to invest if the interest rate implies
that, adjusted for consumers’ time preference, consumption today and consump-
tion tomorrow provide the same marginal utility. Therefore, consumption growth
and hence growth in production overall, is proportional to r = ηβL. Note again
that there are scale effects: if population were growing, growth would explode.
Attempts to extend Romer’s model to fix this problem generally involve some sort
of “fishing out”, where ideas are harder to produce as the existing number of in-
ventions increases. Note also that the outcome is not Pareto efficient: intermediate
goods are marked up, hence used less extensively that they would be otherwise,
hence total production is lower than it otherwise would be if inventions were pro-
duced by a social planner.

Question: could we regain efficiency if competitors were able to produce the inter-
mediate goods, perhaps at a higher cost than the inventor? This would lower the
monopoly markup, but what would be the overall effect in equilibrium?

This model is canonical because it tractably allows analysis of how purposeful
market invention can generate growth that it never infinite nor zero in the long
run. It is less satisfying because the form of competition among intermediate good
producers (aka, inventors) is trivial: they are all monopolists, hence there is no
strategic interaction, hence there is no way to investigate issues like the impact of
competition on growth.

1 Neo-Schumpeterian Models
How do Schumpeterian growth models like Aghion and Howitt (1992) or Gross-
man and Helpman (1991) differ (despite the dates, to my knowledge the Aghion-
Howitt working paper was written first)? In first generation Romer models, all
varieties are always used, and inventors from the past continue to earn the same
flow profit. In neo-Schumpeterian models, there is creative destruction: inven-
tion today makes some old varieties worthless, meaning that the state of technol-
ogy, and assumptions about how R&D generates catchup, can be critical. Further,
strategic interaction will surely play a role. First, whether a firm invests depends
on whether it is destroying its own varieties (a la Arrow’s replacement effect) or
destroying rival varieties, and second, the length of time a firm has market power
for their inventions depends on the level of inventive effort other firms exert trying
to invent an improvement (the “escape competition” effect).

Let’s look at a simplemodel of this sort, due to Acemoglu, which is easy to compare
with the Romer model. As in Romer, the resource constaint means that output is
made up of consumption, production of intermediate goods, and research, with
intermediate goods produced at cost ϕ. However, instead of a fixed number N(t)
of varieties, there is a measure 1 of varieties denoted by v ∈ [0, 1], where the
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“quality” of machine v is represented by a “quality ladder” such that

q(v, t) = λn(v,t)q(v, 0), λ > 1

where n denotes the number of “steps” made onmachine v by time t. That is, inno-
vations are improvements in the quality of each machine, with machines leading
to proportional increases in quality (though see Kortum (1997) for an argument
against this assumption). The final good production function is as in Romer

Y (t) =
1

1− β
X(t)1−βLβ

with the intermediate good production function now being

X(t) = [
∫ 1

0
q(v, t)x(v, t)

ϵβ−1

ϵβ dv]
ϵβ

ϵβ−1 = [
∫ 1

0
q(v, t)x(v, t)1−βdv]

1
1−β

The implicit assumption here is that only the “leading quality” invention is ever
used, no matter its price compared to older vintages, though of course many mod-
els relax this feature (see Goettler and Gordon (2011) for a good empirical model
of this form).

Steps up the quality ladder are produced in a similar manner to Romer varieties:
a firm that spends a flow of Z(v, t) units of the final good on researching line v
will generate improvements at flow rate ηZ(v,t)

q(v,t)
. This means that improvements

are harder for more advanced varieties. Again, there is free entry and the cost
of invention is identical for incumbent monopolists and entrants. Note that due
to the replacement effect, the entrant always has more incentive to innovate than
the incumbent monopolist, and hence all innovation will be done by entrants in a
given variety.

Solving for the balanced growth path equilibrium, as in Romer the first order con-
dition for the final good

∂

∂x(v, t)
[

1

1− β
[
∫ N(t)

0
q(v, t)x(v, t)1−βdv]

1
1−βLβ −

∫ N(t)

0
p(v, t)x(v, t)dv −w(t)L]

implies that demand for variety v is x(v, t, q) = ( q(v,t)
p(v,t)

)
1
βL. Again, by isoelas-

ticity, the price of the intermediate good is a markup over costs divided by the
elasticity of demand. If cost parameter ϕ is normalized to 1− β, as before, price is
optimally q(v, t), as in Romer x(v, t|q) = L, and hence Y (t) = 1

1−β
Q(t)L where

Q(t) =
∫ 1
0 q(v, t). Flow profits for inventors are thus π(v, t|q) = βLq(v, t), which

is identical to Romer aside from the quality ladder multiplier.

Translating flow profits to its infinite discounted value, however, is slightly more
complex than in Romer, since rivals may replace your invention. The time at which
replacement occurs is determined in equilibrium. If you spend 1 unit of the final
good in research for a machine at current quality q

λ
(so that the next invention is

a machine of quality q), you will succeed in inventing that next step at flow rate
λ
q
η. Therefore, by free entry of researchers, 1 = λ

q
ηV ⇒ V = q

λη
. In the balanced

growth path, investment on each line is constant and identical (call this z).

9



Writing down a Bellman equation, where V (v, t, q) is the lifetime discounted value
of an invention of quality q, we have that

rV − V̇ = π − zv

where π(q, v, t) = p(q, v, t)x(q, v, t) − ϕqx(q, v, t) represents the flow profit of
having a leading edge invention (don’t worry if the origin of the so-called HJB
equation is non-obvious; if you don’t know this branch of mathematics, just take
that formula as given). If the value function of invention is unchanging (V̇ = 0,
as must be the case on a balanced growth path), we can rearrange the Bellman to
get

V =
βqL

r + z

and combining with the free entry of researcher condition, we have that

r + z = λqβL

As we noted in Romer, nearly any sensible model of consumer preferences will
generate an Euler condition which implies that higher interest rates mean higher
increases in consumption each period. Under a certain form of these preferences
which is easy to work with, the interest rate r is simply the growth rate in produc-
tion g minus the pure rate of time preference (call this ρ, hence r = g−ρ). All that
remains is to know how z, total inventive effort, is determined. Intuitively, in a
very short period of time∆, if inventive effort along all research lines is z, then z∆
inventions will improve one step; if the period of time is sufficiently short, we can
ignore the possibility of improving multiple steps along a single variety (formally,
this can be shown using what is called Big-O versus little-o orders). Therefore, in
∆, quality will jump λ for a measure z∆(t) of the varieties, and not change for the
rest. Taking the limit of ∆ to zero, then, average quality Q is changing such that

Q̇ = (λ)z − 1× z = (λ− 1)z

Since we have shown that Y (t) = 1
1−β

Q(t)L, hence the growth rate in production
is linear in the growth rate of average quality, we have that the growth rate in
production g ≡ Ẏ

Y
= (λ− 1)z. Combining our equations for the interest rate and

the inventive effort on each variety with the condition r + z = λqβL, we have
that the growth rate

g = (ληβL− ρ)(λ− 1)

Note the difference with the Romer (1990) model, where growth was simply pro-
portional to ηβL. Here, growth depends on the size of the quality improvement
as well. These models are particularly useful for examining how policies affect
V - the value of an invention to incumbents - compared to g, the overall growth
rate. They can also be expanded, by changing the free entry condition, to permit
investigation of various forms of competition in the research sector.
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